MNN/source/geometry/GeometryConv2DBackPropFilte...

280 lines
13 KiB
C++

//
// GeometryConv2DBackPropFilter.cpp
// MNN
//
// Created by MNN on 2020/05/07.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "ConvertUtils.hpp"
#include "GeometryConvUtils.hpp"
#define MNN_OPEN_TIME_TRACE
#include <MNN/AutoTime.hpp>
namespace MNN {
#ifndef MNN_REDUCE_SIZE
class GeometryConv2DBackPropFilter : public GeometryComputer {
public:
bool computeForDepthWise(const Convolution2DCommon* common, Tensor* input, Tensor* outputDiff, Tensor* kernelDiff,
Context& context, CommandBuffer& res) const {
auto kw = common->kernelX();
auto kh = common->kernelY();
auto sw = common->strideX();
auto sh = common->strideY();
auto dw = common->dilateX();
auto dh = common->dilateY();
auto batch = outputDiff->batch();
auto ow = outputDiff->width();
auto oh = outputDiff->height();
auto ic = input->channel();
auto iw = input->width();
auto ih = input->height();
auto pads = ConvolutionCommon::convolutionPad(input, outputDiff, common);
if (TensorUtils::getDescribe(input)->dimensionFormat != MNN_DATA_FORMAT_NCHW) {
std::shared_ptr<Tensor> newT(new Tensor(input, Tensor::CAFFE, false));
ConvertUtils::compute(input, newT.get(), res);
input = newT.get();
res.extras.emplace_back(newT);
}
if (TensorUtils::getDescribe(outputDiff)->dimensionFormat != MNN_DATA_FORMAT_NCHW) {
std::shared_ptr<Tensor> newT(new Tensor(outputDiff, Tensor::CAFFE, false));
ConvertUtils::compute(outputDiff, newT.get(), res);
outputDiff = newT.get();
res.extras.emplace_back(newT);
}
auto outputDes = TensorUtils::getDescribe(kernelDiff);
outputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
outputDes->regions.clear();
for (int ky = 0; ky < kh; ++ky) {
auto startSy = ky * dh - pads.second;
int startDy = 0;
if (startSy < 0) {
startDy = ((-startSy) + sh - 1) / sh;
startSy = startSy + startDy * sh;
}
auto endDy = oh - 1;
auto endSy = endDy * sh + ky * dh - pads.second;
if (endSy >= ih) {
endDy = endDy - (endSy - ih + sh) / sh;
endSy = endDy * sh + ky * dh - pads.second;
}
if (startDy > endDy) {
continue;
}
MNN_ASSERT(endDy >= 0);
MNN_ASSERT(startDy < ih);
auto dstOffsetKy = startDy * ow;
auto srcOffsetKy = startSy * iw;
for (int kx = 0; kx < kw; ++kx) {
auto startSx = kx * dw - pads.first;
int startDx = 0;
if (startSx < 0) {
startDx = ((-startSx) + sw - 1) / sw;
startSx = startSx + startDx * sw;
}
auto endDx = ow - 1;
auto endSx = endDx * sw + kx * dw - pads.first;
if (endSx >= iw) {
endDx = endDx - (endSx - iw + sw) / sw;
endSx = endDx * sw + kx * dw - pads.first;
}
if (startDy > endDy || startDx > endDx) {
continue;
}
auto dstOffsetKx = dstOffsetKy + startDx;
auto srcOffsetKx = srcOffsetKy + startSx;
// Sampler
std::shared_ptr<Tensor> inputTensor(new Tensor(outputDiff, Tensor::CAFFE, false));
auto des = TensorUtils::getDescribe(inputTensor.get());
des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
des->regions.resize(1);
{
Tensor::InsideDescribe::Region& region = des->regions[0];
region.origin = input;
region.size[0] = batch * ic;
region.size[1] = endDy - startDy + 1;
region.size[2] = endDx - startDx + 1;
region.src.offset = srcOffsetKx;
region.dst.offset = dstOffsetKx;
region.src.stride[0] = iw * ih;
region.dst.stride[0] = ow * oh;
region.src.stride[1] = sh * iw;
region.dst.stride[1] = ow;
region.src.stride[2] = sw;
region.dst.stride[2] = 1;
res.extras.emplace_back(inputTensor);
}
auto currentTensor = inputTensor.get();
// Multi
{
std::shared_ptr<Tensor> newTensor(new Tensor(outputDiff, Tensor::CAFFE, false));
auto cmd = GeometryComputerUtils::makeBinary(BinaryOpOperation_MUL, currentTensor, outputDiff,
newTensor.get());
res.command.emplace_back(std::move(cmd));
res.extras.emplace_back(newTensor);
currentTensor = newTensor.get();
}
// Reduce - 0
{
std::shared_ptr<Tensor> reduceInputTensor(
Tensor::createDevice<float>({batch * ic, ow * oh, 1}, Tensor::CAFFE));
{
auto inputDes = TensorUtils::getDescribe(reduceInputTensor.get());
inputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
inputDes->regions = {TensorUtils::makeFullSlice(currentTensor)};
}
std::shared_ptr<Tensor> reduceOutputTensor(
Tensor::createDevice<float>({batch * ic, 1, 1}, Tensor::CAFFE));
auto cmd = GeometryComputerUtils::makeReduce(ReductionType_SUM, reduceInputTensor.get(),
reduceOutputTensor.get());
currentTensor = reduceOutputTensor.get();
res.command.emplace_back(std::move(cmd));
res.extras.emplace_back(reduceInputTensor);
res.extras.emplace_back(reduceOutputTensor);
}
// Reduce - 1
{
std::shared_ptr<Tensor> reduceInputTensor(
Tensor::createDevice<float>({1, batch, ic}, Tensor::CAFFE));
{
auto inputDes = TensorUtils::getDescribe(reduceInputTensor.get());
inputDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
inputDes->regions = {TensorUtils::makeFullSlice(currentTensor)};
}
std::shared_ptr<Tensor> reduceOutputTensor(Tensor::createDevice<float>({1, 1, ic}, Tensor::CAFFE));
currentTensor = reduceOutputTensor.get();
auto cmd = GeometryComputerUtils::makeReduce(ReductionType_SUM, reduceInputTensor.get(),
reduceOutputTensor.get());
res.command.emplace_back(std::move(cmd));
res.extras.emplace_back(reduceInputTensor);
res.extras.emplace_back(reduceOutputTensor);
}
// Set to output
Tensor::InsideDescribe::Region region;
region.origin = currentTensor;
region.size[0] = 1;
region.size[1] = 1;
region.size[2] = ic;
region.dst.offset = ky * kw + kx;
region.dst.stride[0] = 0;
region.dst.stride[1] = 0;
region.dst.stride[2] = kh * kw;
region.src.offset = 0;
region.src.stride[0] = 0;
region.src.stride[1] = 0;
region.src.stride[2] = 1;
outputDes->regions.emplace_back(std::move(region));
}
}
return true;
}
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto common = op->main_as_Convolution2D()->common();
auto input = inputs[0];
auto outputDiff = inputs[1];
bool depthWise = false;
if (inputs[0]->channel() == inputs[1]->channel() && inputs[1]->channel() == common->group()) {
depthWise = true;
return computeForDepthWise(common, input, outputDiff, outputs[0], context, res);
}
auto kw = common->kernelX();
auto kh = common->kernelY();
auto sw = common->strideX();
auto sh = common->strideY();
auto dw = common->dilateX();
auto dh = common->dilateY();
auto batch = outputDiff->batch();
auto ow = outputDiff->width();
auto oh = outputDiff->height();
auto oc = outputDiff->channel();
auto ic = input->channel();
auto iw = input->width();
auto ih = input->height();
auto pads = ConvolutionCommon::convolutionPad(input, outputDiff, common);
MNN_ASSERT(TensorUtils::getDescribe(input)->dimensionFormat != MNN_DATA_FORMAT_NHWC);
MNN_ASSERT(TensorUtils::getDescribe(outputDiff)->dimensionFormat != MNN_DATA_FORMAT_NHWC);
Tensor* A = nullptr;
Tensor* B = nullptr;
{
// B: Input Im2Col, n, ic, ih, iw -> ic*kh*kw, n*oh*ow
std::shared_ptr<Tensor> im2Col(new Tensor);
std::shared_ptr<Tensor> im2ColTemp = GeometryConvUtils::im2Col(im2Col.get(), input, ic, kh, kw, batch, oh, ow, ih, iw, sh, sw, dh, dw, pads);
if (im2ColTemp.get() != nullptr) {
res.extras.emplace_back(im2ColTemp);
}
B = im2Col.get();
res.extras.emplace_back(im2Col);
}
{
// A: Output n, oc, oh, ow -> oc, n*oh*ow
std::shared_ptr<Tensor> outputTranspose(new Tensor);
A = outputTranspose.get();
outputTranspose->buffer().type = halide_type_of<float>();
outputTranspose->buffer().dimensions = 2;
outputTranspose->setLength(0, oc);
outputTranspose->setLength(1, batch * ow * oh);
auto des = TensorUtils::getDescribe(outputTranspose.get());
des->regions.resize(1);
des->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
auto& reg = des->regions[0];
reg.origin = outputDiff;
reg.size[0] = oc;
reg.size[1] = batch;
reg.size[2] = ow * oh;
reg.src.offset = 0;
reg.src.stride[0] = oh * ow;
reg.src.stride[1] = oh * ow * oc;
reg.src.stride[2] = 1;
reg.dst.offset = 0;
reg.dst.stride[0] = oh * ow * batch;
reg.dst.stride[1] = oh * ow;
reg.dst.stride[2] = 1;
res.extras.emplace_back(std::move(outputTranspose));
}
{
// C = MatMul(B, A)
std::shared_ptr<Tensor> C(new Tensor);
C->buffer().type = halide_type_of<float>();
C->buffer().dimensions = 2;
C->setLength(0, ic * kw * kh);
C->setLength(1, oc);
auto cmd = GeometryComputerUtils::makeMatMul(B, A, C.get(), nullptr, false, true);
auto kernelDiffDes = TensorUtils::getDescribe(outputs[0]);
kernelDiffDes->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
// Transpose
auto len0 = kw * kh * ic;
auto len1 = oc;
kernelDiffDes->regions.resize(1);
auto& desReg = kernelDiffDes->regions[0];
desReg.size[0] = 1;
desReg.size[1] = len1;
desReg.size[2] = len0;
desReg.dst.offset = 0;
desReg.dst.stride[0] = 0;
desReg.dst.stride[1] = len0;
desReg.dst.stride[2] = 1;
desReg.src.offset = 0;
desReg.src.stride[0] = 0;
desReg.src.stride[1] = 1;
desReg.src.stride[2] = len1;
desReg.origin = C.get();
res.extras.emplace_back(std::move(C));
res.command.emplace_back(std::move(cmd));
}
return true;
}
};
#endif
static void _create() {
#ifndef MNN_REDUCE_SIZE
std::shared_ptr<GeometryComputer> comp(new GeometryConv2DBackPropFilter);
GeometryComputer::registerGeometryComputer(comp, {OpType_Conv2DBackPropFilter});
#endif
}
REGISTER_GEOMETRY(GeometryConv2DBackPropFilter, _create);
} // namespace MNN