mirror of https://github.com/alibaba/MNN.git
61 lines
2.2 KiB
C++
61 lines
2.2 KiB
C++
//
|
|
// ShapeConvolution3D.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/10.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <math.h>
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
namespace MNN {
|
|
class Convolution3DSizeComputer : public SizeComputer {
|
|
public:
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(1 == inputs.size());
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
auto layer = op->main_as_Convolution3D()->common();
|
|
auto input = inputs[0];
|
|
if (input->buffer().dimensions != 5) {
|
|
return false;
|
|
}
|
|
|
|
auto& outputBuffer = outputs[0]->buffer();
|
|
outputBuffer.dimensions = input->buffer().dimensions;
|
|
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
|
|
outputBuffer.dim[1].extent = layer->outputCount();
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
const int inputLength = input->length(i + 2), stride = (*layer->strides())[i];
|
|
if (inputLength <= 0) {
|
|
return false;
|
|
}
|
|
int outputLength;
|
|
if (layer->padMode() == PadMode_SAME) {
|
|
outputLength = UP_DIV(inputLength, stride);
|
|
} else {
|
|
const int padl = layer->pads()->data()[i], kernel = layer->kernels()->data()[i], dialate = layer->dilates()->data()[i];
|
|
int padr = padl;
|
|
if (layer->pads()->size() == 6) {
|
|
padr = layer->pads()->data()[i+3];
|
|
}
|
|
const int dialatedKernel = (kernel - 1) * dialate + 1;
|
|
outputLength = (inputLength + padl + padr - dialatedKernel) / stride + 1;
|
|
}
|
|
outputBuffer.dim[i + 2].extent = outputLength;
|
|
}
|
|
|
|
outputBuffer.type = input->getType();
|
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE(Convolution3DSizeComputer, OpType_Convolution3D);
|
|
} // namespace MNN
|