MNN/source/shape/ShapeGatherV2.cpp

73 lines
2.3 KiB
C++

//
// ShapeGatherV2.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
namespace MNN {
class GatherV2Computer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto params = inputs[0];
auto indices = inputs[1];
if (indices->getType().code != halide_type_int) {
return false;
}
int axis = 0;
if (inputs.size() == 3) {
auto axis_tensor = inputs[2];
axis = axis_tensor->host<int32_t>()[0];
}
if (op->main_type() == OpParameter_Axis) {
axis = op->main_as_Axis()->axis();
}
if( axis <= -params->buffer().dimensions || axis >= params->buffer().dimensions) {
return false;
}
if (axis < 0) {
axis = params->buffer().dimensions + axis;
}
const int gather_dim_size = params->buffer().dim[axis].extent;
MNN_ASSERT(gather_dim_size <= std::numeric_limits<int32_t>::max());
const int numDimensions = params->buffer().dimensions + indices->buffer().dimensions - 1;
MNN_ASSERT(axis <= numDimensions);
std::vector<int> result_shape;
for (int i = 0; i < axis; i++) {
result_shape.push_back(params->buffer().dim[i].extent);
}
for (int i = 0; i < indices->buffer().dimensions; i++) {
result_shape.push_back(indices->buffer().dim[i].extent);
}
for (int i = axis + 1; i < params->buffer().dimensions; i++) {
result_shape.push_back(params->buffer().dim[i].extent);
}
outputs[0]->buffer().dimensions = (int)result_shape.size();
outputs[0]->buffer().type = params->buffer().type;
for (int i = 0; i < result_shape.size(); i++) {
outputs[0]->buffer().dim[i].extent = result_shape.at(i);
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
};
REGISTER_SHAPE_INPUTS(GatherV2Computer, OpType_GatherV2, (std::vector<int>{2}));
REGISTER_SHAPE(GatherV2Computer, OpType_Gather);
} // namespace MNN