MNN/source/shape/ShapePriorbox.cpp

99 lines
3.2 KiB
C++

//
// ShapePriorbox.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
class PriorBoxComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto layer = op->main_as_PriorBox();
auto inputTensor = inputs[0];
auto inputTensor1 = inputs[1];
int w = inputTensor->width();
int h = inputTensor->height();
auto minSizes = layer->minSizes();
auto maxSizes = layer->maxSizes();
auto aspectRatios = layer->aspectRatios();
int flip = layer->flip();
int imageWidth = layer->imageWidth();
int imageHeight = layer->imageHeight();
float stepWidth = layer->stepWidth();
float stepHeight = layer->stepHeight();
int imageW = imageWidth;
int imageH = imageHeight;
if (imageW <= 0) {
imageW = inputTensor1->width();
}
if (imageH <= 0) {
imageH = inputTensor1->height();
}
float stepW = stepWidth;
float stepH = stepHeight;
if (stepW <= 0) {
stepW = (float)imageW / w;
}
if (stepH <= 0) {
stepH = (float)imageH / h;
}
int minSizeCount = minSizes ? (int)minSizes->size() : 0;
int maxSizeCount = maxSizes ? (int)maxSizes->size() : 0;
std::vector<float> aspectRatiosValue{1.0f};
if (aspectRatios != nullptr) {
for (int i = 0; i < aspectRatios->size(); ++i) {
auto ratio = aspectRatios->data()[i];
bool exist = false;
for (auto v : aspectRatiosValue) {
auto diff = v - ratio;
if (diff < 0) {
diff = -diff;
}
if (diff < 1e-6) {
exist = true;
break;
}
}
if (!exist) {
aspectRatiosValue.emplace_back(ratio);
if (flip) {
aspectRatiosValue.emplace_back(1.0f / ratio);
}
}
}
}
int priorCount = minSizeCount * aspectRatiosValue.size() + maxSizeCount;
auto& outputTensorBuffer = outputs[0]->buffer();
outputTensorBuffer.dim[0].extent = 1;
outputTensorBuffer.dim[1].extent = 2;
outputTensorBuffer.dim[2].extent = 4 * w * h * priorCount;
outputTensorBuffer.dim[3].extent = 1;
outputTensorBuffer.type = halide_type_of<float>();
TensorUtils::getDescribe(outputs[0])->dimensionFormat = MNN_DATA_FORMAT_NC4HW4;
return true;
}
};
REGISTER_SHAPE(PriorBoxComputer, OpType_PriorBox);
} // namespace MNN