MNN/source/shape/ShapeRNNSequenceGRU.cpp

63 lines
2.7 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// ShapeRNNSequenceGRU.cpp
// MNN
//
// Created by MNN on 2019/03/19.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/TensorUtils.hpp"
namespace MNN {
class RNNSequenceGRUComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto outputSize = outputs.size();
MNN_ASSERT(6 <= inputs.size());
MNN_ASSERT(1 <= outputSize);
auto input = inputs[0]; // typically onnx input shape: {sequenceLength, batchSize, inputLength}
auto output = outputs[0];
const auto rnnParam = op->main_as_RNNParam();
const int numUnits = rnnParam->numUnits();
bool keepAllOutputs = rnnParam->keepAllOutputs();
bool isBidirectionalRNN = rnnParam->isBidirectionalRNN();
// input->printShape();
// MNN_ASSERT(2 == rnnParam->fwGateWeight()->dims()->size());
// MNN_ASSERT(2 * numUnits == rnnParam->fwGateWeight()->dims()->data()[1]);
// MNN_ASSERT((input->length(2) + numUnits) == rnnParam->fwGateWeight()->dims()->data()[0]);
output->buffer().type = halide_type_of<float>();
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input)->dimensionFormat;
if (keepAllOutputs) {
TensorUtils::setShape(output, {input->length(0), isBidirectionalRNN + 1, input->length(1), numUnits});
// output shape: {sequenceLength, numDirection, batchSize, inputLength}
// !!caution: onnx model graph some time would squeeze the 1 dim in output 'numDirection', we should keep numDirection index at 1,
// but, the typical memory layout of input tensor in CPURNNSequenceGRU.cpp is {batch, sequenceLength, inputLength},
// there is mismatch here when batch or sequence is not 1
output->buffer().type = input->buffer().type;
if (outputSize > 1) {
auto YHOutput = outputs[1];
TensorUtils::setShape(YHOutput, {isBidirectionalRNN + 1, input->length(1), numUnits});
YHOutput->buffer().type = input->buffer().type;
TensorUtils::getDescribe(YHOutput)->dimensionFormat = TensorUtils::getDescribe(input)->dimensionFormat;
}
} else { // only keep the last hidden layer sequence
TensorUtils::setShape(output, {isBidirectionalRNN + 1, input->length(1), numUnits});
output->buffer().type = input->buffer().type;
}
return true;
}
};
REGISTER_SHAPE(RNNSequenceGRUComputer, OpType_RNNSequenceGRU);
} // namespace MNN