MNN/source/shape/ShapeROIAlign.cpp

47 lines
1.7 KiB
C++

//
// ShapeROIAlign.cpp
// MNN
//
// Created by MNN on 2021/11/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "core/Macro.h"
#include "shape/SizeComputer.hpp"
namespace MNN {
class ROIAlignComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(2 == inputs.size() || 3 == inputs.size() || 4 == inputs.size());
MNN_ASSERT(1 == outputs.size());
if (inputs.size() == 2 || inputs.size() == 3) {
// copy dims
auto& input = inputs[0]->buffer();
auto& output = outputs[0]->buffer();
memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
output.type = halide_type_of<float>();
// width & height
auto roi = op->main_as_RoiParameters();
output.dim[3].extent = roi->pooledWidth();
output.dim[2].extent = roi->pooledHeight();
output.dim[0].extent = inputs[1]->batch();
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
}
// backward mode, fourth input is backward diff, output is the grad of inputs[0]
if (inputs.size() == 4) {
TensorUtils::copyShape(inputs[0], outputs[0], true);
outputs[0]->buffer().type = inputs[0]->getType();
}
return true;
}
};
REGISTER_SHAPE(ROIAlignComputer, OpType_ROIAlign);
} // namespace MNN