mirror of https://github.com/alibaba/MNN.git
170 lines
6.4 KiB
C++
170 lines
6.4 KiB
C++
//
|
|
// ShapeReshape.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/10.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
class FlattenComputer : public SizeComputer {
|
|
public:
|
|
// Ref: https://github.com/onnx/onnx/blob/master/docs/Operators.md#Flatten
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
auto flatten = op->main_as_Flatten();
|
|
if (nullptr == flatten || inputs.empty() || outputs.empty()) {
|
|
return false;
|
|
}
|
|
auto axis = flatten->axis();
|
|
auto endAxis = flatten->endAxis();
|
|
auto dim = inputs[0]->dimensions();
|
|
if (axis < 0) {
|
|
axis += dim;
|
|
}
|
|
if (endAxis < 0) {
|
|
endAxis += dim;
|
|
}
|
|
int inside = 1;
|
|
int middle = 1;
|
|
int outside = 1;
|
|
if (endAxis == 0) {
|
|
for (int i=0; i<axis; ++i) {
|
|
outside *= inputs[0]->length(i);
|
|
}
|
|
for (int i=axis; i<dim; ++i) {
|
|
inside *= inputs[0]->length(i);
|
|
}
|
|
outputs[0]->buffer().dimensions = 2;
|
|
outputs[0]->setLength(0, outside);
|
|
outputs[0]->setLength(1, inside);
|
|
} else {
|
|
// [ 0 - axis, 1, endAxis - lastDim]
|
|
outputs[0]->buffer().dimensions = dim - endAxis + axis;
|
|
for (int i = 0; i < axis; ++i) {
|
|
outputs[0]->setLength(i, inputs[0]->length(i));
|
|
}
|
|
for (int i = axis; i <= endAxis; ++i) {
|
|
outside *= inputs[0]->length(i);
|
|
}
|
|
outputs[0]->setLength(axis, outside);
|
|
if (dim > endAxis + 1) {
|
|
for (int i = endAxis + 1; i < dim; ++i) {
|
|
outputs[0]->setLength(i, inputs[0]->length(i));
|
|
}
|
|
}
|
|
}
|
|
outputs[0]->buffer().type = inputs[0]->getType();
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
return true;
|
|
}
|
|
};
|
|
class ReshapeComputer : public SizeComputer {
|
|
public:
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
|
|
MNN_ASSERT(1 == outputs.size());
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
outputs[0]->buffer().type = inputs[0]->buffer().type;
|
|
int dimSize = 0;
|
|
int shapes[MNN_MAX_TENSOR_DIM];
|
|
auto inputFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
bool fromTf = false;
|
|
auto mainType = op->main_type();
|
|
if (1 == inputs.size()) {
|
|
// Const shape
|
|
if (OpParameter_Reshape == mainType) {
|
|
auto shape = op->main_as_Reshape()->dims();
|
|
dimSize = shape->size();
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
shapes[i] = shape->data()[i];
|
|
}
|
|
} else {
|
|
// For old model compability
|
|
auto shape = op->main_as_QuantizedReshape()->dims();
|
|
dimSize = shape->size();
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
shapes[i] = shape->data()[i];
|
|
}
|
|
}
|
|
} else {
|
|
// shape which is getted at the runtime
|
|
auto inputShape = inputs[1];
|
|
// For the model convert from tensorflow, the format is NHWC, otherwise NCHW
|
|
fromTf = TensorUtils::getDescribe(inputShape)->dimensionFormat == MNN_DATA_FORMAT_NHWC;
|
|
dimSize = inputShape->elementSize();
|
|
auto dim = inputShape->host<int32_t>();
|
|
auto dimType = MNN_DATA_FORMAT_NHWC;
|
|
if (OpParameter_Reshape == mainType) {
|
|
dimType = op->main_as_Reshape()->dimType();
|
|
}
|
|
if ((inputFormat == MNN_DATA_FORMAT_NC4HW4) && dimType == MNN_DATA_FORMAT_NHWC) {
|
|
//NCHW / NC4HW4
|
|
//NHWC -> NCHW
|
|
shapes[0] = dim[0];
|
|
shapes[1] = dim[3];
|
|
shapes[2] = dim[1];
|
|
shapes[3] = dim[2];
|
|
} else {
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
shapes[i] = dim[i];
|
|
}
|
|
}
|
|
}
|
|
output->buffer().dimensions = dimSize;
|
|
|
|
int totalSizeInput = 1;
|
|
for (int i = 0; i < input->buffer().dimensions; ++i) {
|
|
auto l = input->length(i);
|
|
totalSizeInput *= l;
|
|
}
|
|
|
|
int determinAxis = -1;
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
int reshapeDim = shapes[i];
|
|
if (reshapeDim == -1) {
|
|
determinAxis = i;
|
|
output->buffer().dim[i].extent = 1;
|
|
continue;
|
|
}
|
|
// Keep input dimension if reshape dimension is 0 and the element
|
|
// count of the input does not equal to 0.
|
|
// TODO: Reshape 0 is not allowed if the input element count is not
|
|
// 0 for TensorFlow.
|
|
if (reshapeDim == 0 && (!fromTf)) {
|
|
output->buffer().dim[i].extent = input->buffer().dim[i].extent;
|
|
} else {
|
|
output->buffer().dim[i].extent = reshapeDim;
|
|
}
|
|
}
|
|
int totalSizeOutput = 1;
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
totalSizeOutput *= output->buffer().dim[i].extent;
|
|
}
|
|
if (determinAxis >= 0) {
|
|
output->buffer().dim[determinAxis].extent = totalSizeOutput ? totalSizeInput / totalSizeOutput : 0;
|
|
totalSizeOutput *= output->buffer().dim[determinAxis].extent;
|
|
}
|
|
if (totalSizeInput != totalSizeOutput) {
|
|
MNN_PRINT("Reshape error: %d -> %d\n", totalSizeInput, totalSizeOutput);
|
|
return false;
|
|
}
|
|
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input)->dimensionFormat;
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE_INPUTS(ReshapeComputer, OpType_Reshape, {1});
|
|
REGISTER_SHAPE_INPUTS(ReshapeComputer, OpType_QuantizedReshape, {1});
|
|
|
|
REGISTER_SHAPE(FlattenComputer, OpType_Flatten);
|
|
|
|
} // namespace MNN
|