MNN/source/shape/ShapeSliceTf.cpp

57 lines
2.0 KiB
C++

//
// ShapeSliceTf.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
namespace MNN {
class SliceTfComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(inputs.size() == 3);
MNN_ASSERT(outputs.size() == 1);
auto input = inputs[0];
// these two inputs should be const
auto begin_tensor = inputs[1];
auto size_tensor = inputs[2];
MNN_ASSERT(begin_tensor->buffer().dimensions == 1);
MNN_ASSERT(size_tensor->buffer().dimensions == 1);
MNN_ASSERT(input->buffer().dimensions >= 1);
MNN_ASSERT(input->buffer().dimensions == begin_tensor->buffer().dim[0].extent);
MNN_ASSERT(input->buffer().dimensions == size_tensor->buffer().dim[0].extent);
auto output = outputs[0];
output->buffer().dimensions = input->buffer().dimensions;
output->buffer().type = input->buffer().type;
int dim = 0;
auto sizePtr = size_tensor->host<int32_t>();
for (int i = 0; i < input->buffer().dimensions; i++) {
dim = sizePtr[i];
if (dim == -1 ) {
auto begin = begin_tensor->host<int32_t>()[i];
if (begin < 0) {
begin += input->length(i);
}
dim = input->buffer().dim[i].extent - begin;
}
MNN_ASSERT(dim <= input->length(i));
output->buffer().dim[i].extent = dim;
}
for (int i=0; i<outputs.size(); ++i) {
TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
}
return true;
}
};
REGISTER_SHAPE_INPUTS(SliceTfComputer, OpType_SliceTf, (std::vector<int>{1, 2}));
} // namespace MNN