mirror of https://github.com/alibaba/MNN.git
41 lines
1.4 KiB
C++
41 lines
1.4 KiB
C++
//
|
|
// ShapeTranspose.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/10.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
namespace MNN {
|
|
|
|
class TransposeComputer : public SizeComputer {
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
const Tensor* input = inputs[0];
|
|
Tensor* perm = inputs[1];
|
|
const int dims = input->buffer().dimensions;
|
|
if (perm->getType().code != halide_type_int || 32 != perm->getType().bits || dims != perm->buffer().dim[0].extent) {
|
|
return false;
|
|
}
|
|
auto permutation = perm->host<int32_t>();
|
|
outputs[0]->buffer().dimensions = dims;
|
|
outputs[0]->buffer().type = input->getType();
|
|
for (int i = 0; i < dims; ++i) {
|
|
const int32_t d = permutation[i];
|
|
if (d < 0 || d >= dims) {
|
|
return false;
|
|
}
|
|
outputs[0]->buffer().dim[i].extent = input->buffer().dim[d].extent;
|
|
}
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
REGISTER_SHAPE_INPUTS(TransposeComputer, OpType_Transpose, {1});
|
|
} // namespace MNN
|