mirror of https://github.com/alibaba/MNN.git
335 lines
14 KiB
C++
335 lines
14 KiB
C++
//
|
|
// InitNet.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/09/08.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
#include "InitNet.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
#include <unordered_map>
|
|
#include "core/OpCommonUtils.hpp"
|
|
#include "half.hpp"
|
|
|
|
namespace MNN {
|
|
bool needComputeOp(const Op* op) {
|
|
if (op->type() != OpType_Input && op->type() != OpType_Const && op->type() != OpType_TrainableParam) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
bool computeShapeForBlob(const Blob* parameter, Tensor* output) {
|
|
bool zeroShape = false;
|
|
if (parameter->dims() != nullptr) {
|
|
output->buffer().dimensions = parameter->dims()->size();
|
|
for (int i = 0; i < output->buffer().dimensions; i++) {
|
|
output->buffer().dim[i].extent = parameter->dims()->Get(i);
|
|
if (output->length(i) <= 0) {
|
|
zeroShape = true;
|
|
}
|
|
}
|
|
} else {
|
|
output->buffer().dimensions = 0;
|
|
}
|
|
if (parameter->dataType() == DataType_DT_HALF) {
|
|
output->setType(DataType_DT_FLOAT);
|
|
} else {
|
|
output->setType(parameter->dataType());
|
|
}
|
|
TensorUtils::getDescribe(output)->dimensionFormat = parameter->dataFormat();
|
|
TensorUtils::setLinearLayout(output);
|
|
return zeroShape;
|
|
}
|
|
|
|
bool initConstTensors(std::vector<std::shared_ptr<Tensor>>& tensors, const Net* net, Backend* defaultBackend, ErrorCode& code, FileLoader* external) {
|
|
bool valid = true;
|
|
tensors.resize(net->tensorName()->size());
|
|
// Set up const
|
|
for (int opIndex = 0; opIndex < net->oplists()->size(); ++opIndex) {
|
|
auto op = net->oplists()->GetAs<Op>(opIndex);
|
|
if (OpType_Const == op->type() || OpType_TrainableParam == op->type()) {
|
|
MNN_ASSERT(nullptr != op->outputIndexes());
|
|
auto index = op->outputIndexes()->data()[0];
|
|
tensors[index].reset(new Tensor);
|
|
TensorUtils::getDescribe(tensors[index].get())->index = index;
|
|
auto parameter = op->main_as_Blob();
|
|
auto output = tensors[index].get();
|
|
if (op->type() == OpType_TrainableParam) {
|
|
TensorUtils::getDescribe(output)->usage = Tensor::InsideDescribe::TRAINABLE;
|
|
}
|
|
bool zeroShape = computeShapeForBlob(parameter, output);
|
|
TensorUtils::getDescribe(output)->usage = Tensor::InsideDescribe::CONSTANT;
|
|
TensorUtils::getDescribe(output)->isMutable = false;
|
|
TensorUtils::getDescribeOrigin(output)->setBackend(defaultBackend);
|
|
//MNN_PRINT("Const tensor %p is %p bn\n", output, defaultBackend);
|
|
if (zeroShape) {
|
|
continue;
|
|
}
|
|
auto res = defaultBackend->onAcquireBuffer(output, Backend::STATIC);
|
|
if (!res) {
|
|
code = OUT_OF_MEMORY;
|
|
return false;
|
|
}
|
|
if (parameter->dataType() == DataType_DT_HALF) {
|
|
if (nullptr == parameter->uint8s()) {
|
|
// Error half const
|
|
code = INVALID_VALUE;
|
|
return false;
|
|
}
|
|
auto outputPtr = output->host<float>();
|
|
auto size = output->elementSize();
|
|
half_float::half* src = nullptr;
|
|
std::unique_ptr<half_float::half[]> tmp;
|
|
if (USE_EXTERNAL_DATA(parameter)) {
|
|
tmp.reset((new half_float::half[size]));
|
|
src = tmp.get();
|
|
OpCommonUtils::loadExternalDatas(external, {reinterpret_cast<char*>(src)}, parameter->external()->data());
|
|
} else {
|
|
src = (half_float::half*)parameter->uint8s()->data();
|
|
}
|
|
for (int i=0; i<size; ++i) {
|
|
outputPtr[i] = src[i];
|
|
}
|
|
} else {
|
|
OpCommonUtils::loadBlobData(external, op, output->host<char>(), output->size());
|
|
}
|
|
} else {
|
|
if (nullptr != op->outputIndexes()) {
|
|
for (int i=0; i<op->outputIndexes()->size(); ++i) {
|
|
auto index = op->outputIndexes()->data()[i];
|
|
if (nullptr == tensors[index].get()) {
|
|
continue;
|
|
}
|
|
auto des = TensorUtils::getDescribe(tensors[index].get());
|
|
if (des->usage == Tensor::InsideDescribe::CONSTANT) {
|
|
des->usage = Tensor::InsideDescribe::TRAINABLE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
static void _createTensor(std::shared_ptr<Tensor>& dst, int index) {
|
|
if (dst.get() == nullptr) {
|
|
dst.reset(new Tensor);
|
|
TensorUtils::getDescribe(dst.get())->index = index;
|
|
}
|
|
}
|
|
bool initTensors(std::vector<std::shared_ptr<Tensor>>& tensors, const Net* net, const int* oplists, size_t opListSize) {
|
|
bool valid = true;
|
|
auto describes = net->extraTensorDescribe();
|
|
if (nullptr != oplists) {
|
|
for (int i=0; i<opListSize; ++i) {
|
|
auto op = net->oplists()->GetAs<Op>(oplists[i]);
|
|
if (nullptr != op->inputIndexes()) {
|
|
for (int v=0; v<op->inputIndexes()->size(); ++v) {
|
|
auto index = op->inputIndexes()->data()[v];
|
|
_createTensor(tensors[index], index);
|
|
}
|
|
}
|
|
if (nullptr != op->outputIndexes()) {
|
|
for (int v=0; v<op->outputIndexes()->size(); ++v) {
|
|
auto index = op->outputIndexes()->data()[v];
|
|
_createTensor(tensors[index], index);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (int i=0; i<tensors.size(); ++i) {
|
|
// Init all tensor except for const
|
|
_createTensor(tensors[i], i);
|
|
}
|
|
}
|
|
if (describes) {
|
|
for (int i = 0; i < describes->size(); i++) {
|
|
auto des = describes->GetAs<TensorDescribe>(i);
|
|
int index = des->index();
|
|
if (tensors[index].get() != nullptr && des->quantInfo()) {
|
|
TensorUtils::getDescribe(tensors[index].get())->quantAttr.reset(new QuantAttr);
|
|
auto quant = TensorUtils::getDescribe(tensors[index].get())->quantAttr.get();
|
|
quant->scale = des->quantInfo()->scale();
|
|
quant->zero = des->quantInfo()->zero();
|
|
quant->min = des->quantInfo()->min();
|
|
quant->max = des->quantInfo()->max();
|
|
if (des->quantInfo()->type() != DataType_DT_INVALID) {
|
|
quant->type = des->quantInfo()->type();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Set Input Tensor, if the type of input is not the same with ExtraTensorDescribe, use input parameter
|
|
for (int opIndex = 0; opIndex < net->oplists()->size(); ++opIndex) {
|
|
auto op = net->oplists()->GetAs<Op>(opIndex);
|
|
if (OpType_Input == op->type()) {
|
|
MNN_ASSERT(nullptr != op->outputIndexes());
|
|
MNN_ASSERT(op->outputIndexes()->size() == 1);
|
|
auto index = op->outputIndexes()->data()[0];
|
|
if (tensors[index].get() == nullptr) {
|
|
continue;
|
|
}
|
|
auto tensor = tensors[index].get();
|
|
auto& tb = tensor->buffer();
|
|
auto inputParam = op->main_as_Input();
|
|
if (auto idims = inputParam->dims()) {
|
|
for (int i = 0; i < idims->size(); ++i) {
|
|
int extent = idims->data()[i];
|
|
// dim-0 is batch(when input batch is -1, set it to be 1, ignore other dim)
|
|
if (i == 0 && extent == -1) {
|
|
extent = 1;
|
|
}
|
|
if (extent < 0) {
|
|
valid = false;
|
|
}
|
|
tb.dim[i].extent = extent;
|
|
}
|
|
tb.dimensions = idims->size();
|
|
} else {
|
|
tb.dimensions = 0;
|
|
}
|
|
tensor->setType(inputParam->dtype());
|
|
TensorUtils::getDescribe(tensor)->dimensionFormat = inputParam->dformat();
|
|
TensorUtils::setLinearLayout(tensor);
|
|
}
|
|
}
|
|
if (net->usage() != Usage_INFERENCE_STATIC) {
|
|
return valid;
|
|
}
|
|
// static model will set all tensors' shape
|
|
for (int v = 0; v < describes->size(); v++) {
|
|
auto des = describes->GetAs<TensorDescribe>(v);
|
|
int index = des->index();
|
|
auto tensorDes = TensorUtils::getDescribe(tensors[index].get());
|
|
if (tensorDes->usage != Tensor::InsideDescribe::NORMAL) {
|
|
// Const / Trainable Shape has been inited
|
|
continue;
|
|
}
|
|
auto blob = des->blob();
|
|
auto& tb = tensors[index]->buffer();
|
|
if (nullptr == blob) {
|
|
continue;
|
|
}
|
|
if (auto idims = blob->dims()) {
|
|
for (int d = 0; d < idims->size(); d++) {
|
|
tb.dim[d].extent = idims->Get(d);
|
|
}
|
|
tb.dimensions = idims->size();
|
|
} else {
|
|
tb.dimensions = 0;
|
|
}
|
|
tensors[index]->setType(blob->dataType());
|
|
tensorDes->dimensionFormat = blob->dataFormat();
|
|
if (auto regions = des->regions()) {
|
|
auto& regs = tensorDes->regions;
|
|
tensorDes->memoryType = Tensor::InsideDescribe::MEMORY_BACKEND;
|
|
regs.clear();
|
|
regs.reserve(regions->size());
|
|
for (int r = 0; r < regions->size(); r++) {
|
|
auto region = regions->GetAs<Region>(r);
|
|
Tensor::InsideDescribe::Region reg;
|
|
reg.origin = tensors[region->origin()].get();
|
|
reg.src.offset = region->src()->offset();
|
|
reg.dst.offset = region->dst()->offset();
|
|
for (int d = 0; d < 3; d++) {
|
|
reg.size[d] = region->size()->data()[d];
|
|
reg.src.stride[d] = region->src()->stride()->data()[d];
|
|
reg.dst.stride[d] = region->dst()->stride()->data()[d];
|
|
}
|
|
regs.emplace_back(std::move(reg));
|
|
}
|
|
}
|
|
}
|
|
return valid;
|
|
}
|
|
void initPipelineInfosFromOps(std::vector<Schedule::OpCacheInfo>& infos, std::vector<const Op*>& ops, const std::vector<std::shared_ptr<Tensor>>& allTensors) {
|
|
for (const Op* op : ops) {
|
|
// MNN_PRINT("initPipelineInfosFromOps, op type:%s, op name:%s\n", EnumNameOpType(op->type()), op->name()->c_str());
|
|
|
|
Schedule::OpCacheInfo opInfo;
|
|
opInfo.op = op;
|
|
if (nullptr != op->outputIndexes()) {
|
|
auto data = op->outputIndexes()->data();
|
|
for (int j = 0; j < op->outputIndexes()->size(); ++j) {
|
|
opInfo.outputs.push_back(allTensors[data[j]].get());
|
|
}
|
|
}
|
|
if (nullptr != op->inputIndexes()) {
|
|
auto data = op->inputIndexes()->data();
|
|
for (int j = 0; j < op->inputIndexes()->size(); ++j) {
|
|
opInfo.inputs.push_back(allTensors[data[j]].get());
|
|
}
|
|
}
|
|
if (needComputeOp(op)) {
|
|
infos.emplace_back(std::move(opInfo));
|
|
}
|
|
}
|
|
}
|
|
|
|
void setInputOutputForOps(std::vector<std::shared_ptr<Tensor>>& allTensors, const std::vector<const Op*>& ops, bool isStatic) {
|
|
std::set<int> inputIndexes;
|
|
std::set<int> outputIndexes;
|
|
// 0. deal virtual tensor for static model:
|
|
// when : A (Any_Op) -----> B (Raster_Op)
|
|
// the tensor will be like below:
|
|
// A_outputs : a_tensor
|
|
// B_inputs : b_tensor (virtual)
|
|
// b_tensor.describe.origin = a_tensor_ptr
|
|
// b_tensor is not a InputTensot, a_tensor is not a OutputTensor
|
|
// so add b_tensor to OutputIndexes, a_tensor to InputIndexes.
|
|
if (isStatic) {
|
|
std::unordered_map<Tensor*, int> tensorMap;
|
|
for (int index = 0; index < allTensors.size(); index++) {
|
|
tensorMap.insert(std::make_pair(allTensors[index].get(), index));
|
|
}
|
|
for (int index = 0; index < allTensors.size(); index++) {
|
|
auto des = TensorUtils::getDescribe(allTensors[index].get());
|
|
for (int i = 0; i < des->regions.size(); i++) {
|
|
outputIndexes.insert(index);
|
|
MNN_ASSERT(tensorMap.find(des->regions[i].origin) != tensorMap.end());
|
|
int x = tensorMap[des->regions[i].origin];
|
|
inputIndexes.insert(x);
|
|
}
|
|
}
|
|
}
|
|
// 1. insert all output/input index in outputIndexes/inputIndexes
|
|
for (auto op : ops) {
|
|
if (nullptr != op->outputIndexes()) {
|
|
auto data = op->outputIndexes()->data();
|
|
for (int j = 0; j < op->outputIndexes()->size(); ++j) {
|
|
outputIndexes.insert(data[j]);
|
|
}
|
|
}
|
|
if (nullptr != op->inputIndexes()) {
|
|
auto data = op->inputIndexes()->data();
|
|
for (int j = 0; j < op->inputIndexes()->size(); ++j) {
|
|
inputIndexes.insert(data[j]);
|
|
}
|
|
}
|
|
MNN_ASSERT(OpType_Input != op->type());
|
|
}
|
|
// 2. the index in outputIndexes/inputIndexed but not in inputIndexes/outputIndexes is output/input
|
|
std::set<int> input;
|
|
std::set<int> output;
|
|
std::set_difference(outputIndexes.begin(), outputIndexes.end(), inputIndexes.begin(), inputIndexes.end(),
|
|
std::inserter(output, output.begin()));
|
|
std::set_difference(inputIndexes.begin(), inputIndexes.end(), outputIndexes.begin(), outputIndexes.end(),
|
|
std::inserter(input, input.begin()));
|
|
// 3. set usage for Tensor by index
|
|
for (auto index : input) {
|
|
auto des = TensorUtils::getDescribe(allTensors[index].get());
|
|
if (des->usage == Tensor::InsideDescribe::CONSTANT || des->usage == Tensor::InsideDescribe::TRAINABLE) {
|
|
continue;
|
|
}
|
|
des->usage = Tensor::InsideDescribe::INPUT;
|
|
}
|
|
for (auto index : output) {
|
|
auto des = TensorUtils::getDescribe(allTensors[index].get());
|
|
if (des->usage == Tensor::InsideDescribe::NORMAL) {
|
|
des->usage = TensorUsage::OUTPUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace MNN
|