MNN/test/expr/ExecutorResetTest.cpp

204 lines
7.9 KiB
C++

//
// ExecutorResetTest.cpp
// MNNTests
//
// Created by MNN on 2023/01/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <thread>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/ExecutorScope.hpp>
#include <MNN/expr/Module.hpp>
#include "MNNTestSuite.h"
using namespace MNN::Express;
class ExecutorResetTest : public MNNTestCase {
public:
static VARP convBlock(VARP x, INTS channels, int stride) {
int inputChannel = channels[0], outputChannel = channels[1];
int group = inputChannel;
x = _Conv(0.0f, 0.0f, x, {inputChannel, inputChannel}, {3, 3}, SAME, {stride, stride}, {1, 1}, group);
x = _Conv(0.0f, 0.0f, x, {inputChannel, outputChannel}, {1, 1}, SAME, {1, 1}, {1, 1}, 1);
return x;
}
static VARP convBlocTemp(VARP x, INTS channels, int stride) {
int inputChannel = channels[0], outputChannel = channels[1];
int group = inputChannel;
x = _Conv(0.0f, 0.0f, x, {inputChannel, inputChannel}, {3, 3}, SAME, {stride, stride}, {1, 1});
x = _Conv(0.0f, 0.0f, x, {inputChannel, outputChannel}, {1, 1}, SAME, {1, 1}, {1, 1}, 1);
return x;
}
static VARP _mobileNetV1Expr(VARP x) {
int inputSize = 224, poolSize; // MobileNet_224, MobileNet_192, MobileNet_160, MobileNet_128
{
inputSize = 224;
poolSize = inputSize / 32;
}
int channels[6]; // MobileNet_100, MobileNet_075, MobileNet_050, MobileNet_025
{ channels[0] = 32; }
for (int i = 1; i < 6; ++i) {
channels[i] = channels[0] * (1 << i);
}
x->setName("Input");
x = _Conv(0.0f, 0.0f, x, {3, channels[0]}, {3, 3}, SAME, {2, 2}, {1, 1}, 1);
x = convBlock(x, {channels[0], channels[1]}, 1);
x = convBlock(x, {channels[1], channels[2]}, 2);
x = convBlock(x, {channels[2], channels[2]}, 1);
x = convBlock(x, {channels[2], channels[3]}, 2);
x = convBlock(x, {channels[3], channels[3]}, 1);
x = convBlock(x, {channels[3], channels[4]}, 2);
x = convBlock(x, {channels[4], channels[4]}, 1);
x = convBlocTemp(x, {channels[4], channels[4]}, 1);
x = convBlock(x, {channels[4], channels[4]}, 1);
x = convBlock(x, {channels[4], channels[4]}, 1);
x = convBlock(x, {channels[4], channels[4]}, 1);
x = convBlock(x, {channels[4], channels[5]}, 2);
x = convBlock(x, {channels[5], channels[5]}, 1);
x = _AvePool(x, {poolSize, poolSize}, {1, 1}, VALID);
x = _Conv(0.0f, 0.0f, x, {channels[5], 1001}, {1, 1}, VALID, {1, 1}, {1, 1}, 1); // reshape FC with Conv1x1
x = _Softmax(x, -1);
x = _Convert(x, NCHW);
x->setName("Prob");
return x;
}
bool _runmbv1() {
auto x = _Input({1, 3, 224, 224}, NC4HW4);
auto y = _mobileNetV1Expr(x);
auto buffer = Variable::save({y});
y = nullptr;x=nullptr;
MNN::BackendConfig bnConfig;
auto exe = Executor::newExecutor(MNN_FORWARD_CPU, bnConfig, 1);
ExecutorScope scope(exe);
std::shared_ptr<Module> m(Module::load({"Input"}, {"Prob"}, (const uint8_t*)buffer.data(), buffer.size()));
x = _Input({1, 3, 224, 224}, NC4HW4);
x->writeMap<float>();
m->onForward({x});
exe->setGlobalExecutorConfig(MNN_FORWARD_CPU, bnConfig, 4);
m->onForward({x});
return true;
}
virtual bool run(int precision) {
int numberThread = 0;
MNN::BackendConfig bnConfig;
auto exe = Executor::newExecutor(MNN_FORWARD_CPU, bnConfig, 1);
ExecutorScope scope(exe);
exe->setGlobalExecutorConfig(MNN_FORWARD_CPU, bnConfig, 4);
auto x = _Input({1, 3, 224, 224}, NC4HW4);
auto y = _ReduceSum(_Multiply(x, x), {});
::memset(x->writeMap<float>(), 0, x->getInfo()->size * sizeof(float));
y->readMap<float>();
auto res = Executor::getComputeInfo(y->expr().first, MNN::Interpreter::THREAD_NUMBER, &numberThread);
if (numberThread != 4 || res == false) {
FUNC_PRINT(1);
return false;
}
exe->setGlobalExecutorConfig(MNN_FORWARD_CPU, bnConfig, 4);
::memset(x->writeMap<float>(), 0, x->getInfo()->size * sizeof(float));
y->readMap<float>();
res = Executor::getComputeInfo(y->expr().first, MNN::Interpreter::THREAD_NUMBER, &numberThread);
if (numberThread != 4 || res == false) {
FUNC_PRINT(1);
return false;
}
exe->setGlobalExecutorConfig(MNN_FORWARD_CPU, bnConfig, 1);
// Reset x, y
x = _Input({1, 3, 224, 224}, NC4HW4);
y = _ReduceSum(_Multiply(x, x), {});
::memset(x->writeMap<float>(), 0, x->getInfo()->size * sizeof(float));
y->readMap<float>();
res = Executor::getComputeInfo(y->expr().first, MNN::Interpreter::THREAD_NUMBER, &numberThread);
if (numberThread != 1 || res == false) {
FUNC_PRINT(1);
return false;
}
if (!_runmbv1()) {
return false;
}
return true;
}
};
MNNTestSuiteRegister(ExecutorResetTest, "expr/ExecutorReset");
class ExecutorConfigTest : public MNNTestCase {
virtual bool run(int precision) {
std::vector<std::thread> threads;
int threadNumber = 5;
for (int i=0; i<threadNumber; ++i) {
threads.emplace_back(([] {
for (int u=0; u<10; ++u) {
MNN::ScheduleConfig config;
std::shared_ptr<Executor::RuntimeManager> rt(Executor::RuntimeManager::createRuntimeManager(config));
}
}));
}
for (auto& t : threads) {
t.join();
}
return true;
}};
MNNTestSuiteRegister(ExecutorConfigTest, "expr/ExecutorConfigTest");
class ExecutorCallBackTest : public MNNTestCase {
virtual bool run(int precision) {
int beforeSuccess = 0;
int afterSuccess = 0;
MNN::TensorCallBackWithInfo beforeCallBack = [&](const std::vector<MNN::Tensor*>& ntensors, const MNN::OperatorInfo* info) {
beforeSuccess = 1;
return true;
};
MNN::TensorCallBackWithInfo callBack = [&](const std::vector<MNN::Tensor*>& ntensors, const MNN::OperatorInfo* info) {
afterSuccess = 1;
return true;
};
MNN::BackendConfig config;
std::shared_ptr<Executor> exe(Executor::newExecutor(MNN_FORWARD_CPU, config, 1));
MNN::Express::ExecutorScope scope(exe);
{
auto input = _Input({}, NCHW);
input->writeMap<float>()[0] = 0.5f;
auto output = _Square(input);
auto outputPtr = output->readMap<float>();
if (beforeSuccess != 0 || afterSuccess != 0) {
FUNC_PRINT(1);
return false;
}
}
exe->setCallBack(std::move(beforeCallBack), std::move(callBack));
{
auto input = _Input({}, NCHW);
input->writeMap<float>()[0] = 0.5f;
auto output = _Square(input);
auto outputPtr = output->readMap<float>();
if (beforeSuccess == 0 || afterSuccess == 0) {
FUNC_PRINT(1);
return false;
}
}
afterSuccess = 0;
beforeSuccess = 0;
exe->setCallBack(nullptr, nullptr);
{
auto input = _Input({}, NCHW);
input->writeMap<float>()[0] = 0.5f;
auto output = _Square(input);
auto outputPtr = output->readMap<float>();
if (beforeSuccess != 0 || afterSuccess != 0) {
FUNC_PRINT(1);
return false;
}
}
return true;
}
};
MNNTestSuiteRegister(ExecutorCallBackTest, "expr/ExecutorCallBackTest");