mirror of https://github.com/alibaba/MNN.git
149 lines
6.2 KiB
C++
149 lines
6.2 KiB
C++
//
|
|
// VulkanImageConverter.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/31.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "VulkanImageConverter.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "VulkanBackend.hpp"
|
|
namespace MNN {
|
|
VulkanImageConverter::VulkanImageConverter(const VulkanBackend* bn) {
|
|
mBackend = bn;
|
|
mSampler = bn->getCommonSampler();
|
|
mConst.reset(
|
|
new VulkanBuffer(bn->getMemoryPool(), false, 8 * sizeof(int), nullptr, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT));
|
|
}
|
|
|
|
void VulkanImageConverter::_setUpPipeline(MNN_DATA_FORMAT sourceFormat, MNN_DATA_FORMAT destFormat, TYPE type,
|
|
halide_type_t datatype) {
|
|
if (nullptr != mPipeline && sourceFormat == mCurrentSource && destFormat == mCurrentDest && mConvertImage == type) {
|
|
return;
|
|
}
|
|
mCurrentDest = destFormat;
|
|
mCurrentSource = sourceFormat;
|
|
mConvertImage = type;
|
|
|
|
std::vector<VkDescriptorType> types{VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER};
|
|
std::string name;
|
|
if (type == BUFFER_TO_IMAGE) {
|
|
types[0] = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE;
|
|
if (sourceFormat == MNN_DATA_FORMAT_NC4HW4) {
|
|
name = "glsl_nc4hw4toimage_comp";
|
|
} else {
|
|
name = "glsl_nchwToimage_comp";
|
|
}
|
|
} else {
|
|
if (destFormat == MNN_DATA_FORMAT_NC4HW4) {
|
|
name = "glsl_imageTonc4hw4_comp";
|
|
} else {
|
|
name = "glsl_imageTonchw_comp";
|
|
}
|
|
}
|
|
// FUNC_PRINT_ALL(name.c_str(), s);
|
|
mPipeline = mBackend->getPipeline(name, types);
|
|
MNN_ASSERT(nullptr != mPipeline);
|
|
}
|
|
|
|
void VulkanImageConverter::encodeBufferToTensor(VkBuffer srcBuffer, const Tensor* destTensor, const int bufferSize,
|
|
VkDeviceSize bufferOffset, MNN_DATA_FORMAT srcBufferFormat,
|
|
const VulkanCommandPool::Buffer* cmdBuffer) {
|
|
auto destFormat = TensorUtils::getDescribe(destTensor)->dimensionFormat;
|
|
auto sourceFormat = srcBufferFormat;
|
|
cmdBuffer->barrierSource(srcBuffer, 0, bufferSize);
|
|
auto tensor = destTensor;
|
|
_setUpPipeline(sourceFormat, destFormat, BUFFER_TO_IMAGE, tensor->buffer().type);
|
|
auto vkTensor = (VulkanTensor*)(destTensor->deviceId());
|
|
for (int i=0; i<vkTensor->imageSize(); ++i) {
|
|
vkTensor->image(i)->barrierWrite(cmdBuffer->get());
|
|
}
|
|
_encodeImageBufferConvert(tensor, srcBuffer, bufferSize, bufferOffset, cmdBuffer, VK_IMAGE_LAYOUT_GENERAL, srcBufferFormat);
|
|
}
|
|
void VulkanImageConverter::_encodeImageBufferConvert(const Tensor* tensor, VkBuffer destBuffer, const int bufferSize, VkDeviceSize bufferOffset, const VulkanCommandPool::Buffer* cmdBuffer, VkImageLayout layout, MNN_DATA_FORMAT bufferFormat) {
|
|
auto dims = (int*)mConst->map();// W, H, C, N
|
|
auto nhwc = VulkanTensor::tensorShapeFormat(tensor);
|
|
dims[0] = nhwc[2];
|
|
dims[1] = nhwc[1];
|
|
dims[2] = nhwc[3];
|
|
dims[3] = nhwc[0];
|
|
// Set stride for W, H, C, N
|
|
if (bufferFormat == MNN_DATA_FORMAT_NHWC) {
|
|
dims[4] = nhwc[3];
|
|
dims[5] = nhwc[3] * nhwc[2];
|
|
dims[6] = 1;
|
|
dims[7] = nhwc[3] * nhwc[2] * nhwc[1];
|
|
} else {
|
|
dims[4] = 1;
|
|
dims[5] = nhwc[2];
|
|
dims[6] = nhwc[2] * nhwc[1];
|
|
dims[7] = nhwc[3] * nhwc[2] * nhwc[1] ;
|
|
}
|
|
mConst->unmap();
|
|
auto vkTensor = reinterpret_cast<VulkanTensor*>(tensor->deviceId());
|
|
auto& mBlocks = vkTensor->blocks();
|
|
auto& limits = mBackend->proty().limits;
|
|
int wUnit = limits.maxImageDimension2D;
|
|
int hUnit = limits.maxImageDimension2D;
|
|
|
|
struct OffsetBuffer {
|
|
int offset[4]; // Offset w, h, c, n
|
|
int size[4];//w, h, c, w*h*c
|
|
};
|
|
mSet.resize(vkTensor->imageSize());
|
|
mOffset.resize(vkTensor->imageSize());
|
|
for (int y=0; y<mBlocks[1]; ++y) {
|
|
auto ySta = y * hUnit;
|
|
for (int x=0; x<mBlocks[0]; ++x) {
|
|
auto xSta = x * wUnit;
|
|
OffsetBuffer offset;
|
|
offset.offset[0] = xSta;
|
|
offset.offset[1] = ySta;
|
|
auto index = y*mBlocks[0] + x;
|
|
auto image = vkTensor->image(index);
|
|
offset.size[0] = image->width();
|
|
offset.size[1] = image->height();
|
|
offset.size[2] = 0;
|
|
offset.size[3] = image->width() * image->height();
|
|
mOffset[index].reset(new VulkanBuffer(mBackend->getMemoryPool(), false, sizeof(offset), &offset, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT));
|
|
mSet[index].reset(mPipeline->createSet());
|
|
mSet[index]->writeImage(image->view(), mSampler->get(), layout, 0);
|
|
mSet[index]->writeBuffer(destBuffer, 1, bufferSize, bufferOffset);
|
|
mSet[index]->writeBuffer(mConst->buffer(), 2, mConst->size());
|
|
mSet[index]->writeBuffer(mOffset[index]->buffer(), 3, mOffset[index]->size());
|
|
mPipeline->bind(cmdBuffer->get(), mSet[index]->get());
|
|
vkCmdDispatch(cmdBuffer->get(), UP_DIV(offset.size[3], 256), 1, 1);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void VulkanImageConverter::encodeTensorToBuffer(const Tensor* srcTensor, VkBuffer destBuffer, const int bufferSize,
|
|
VkDeviceSize bufferOffset, MNN_DATA_FORMAT destBufferFormat,
|
|
const VulkanCommandPool::Buffer* cmdBuffer) {
|
|
auto sourceFormat = TensorUtils::getDescribe(srcTensor)->dimensionFormat;
|
|
auto destFormat = destBufferFormat;
|
|
|
|
auto vkTensor = (VulkanTensor*)(srcTensor->deviceId());
|
|
auto tensor = srcTensor;
|
|
_setUpPipeline(sourceFormat, destFormat, IMAGE_TO_BUFFER, tensor->buffer().type);
|
|
for (int i=0; i<vkTensor->imageSize(); ++i) {
|
|
vkTensor->image(i)->barrierRead(cmdBuffer->get());
|
|
}
|
|
_encodeImageBufferConvert(tensor, destBuffer, bufferSize, bufferOffset, cmdBuffer,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, destBufferFormat);
|
|
}
|
|
|
|
MNN_DATA_FORMAT VulkanImageConverter::getTensorLinearFormat(const Tensor* tensor) {
|
|
auto format = TensorUtils::getDescribe(tensor)->dimensionFormat;
|
|
if (MNN_DATA_FORMAT_NC4HW4 == format) {
|
|
return MNN_DATA_FORMAT_NCHW;
|
|
}
|
|
return format;
|
|
}
|
|
|
|
} // namespace MNN
|