mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			48 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			48 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeROIPooling.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "shape/SizeComputer.hpp"
 | 
						|
#include "core/Macro.h"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
// Size Computer
 | 
						|
class ROIPoolingComputer : public SizeComputer {
 | 
						|
    virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | 
						|
                               const std::vector<Tensor *> &outputs) const override {
 | 
						|
        MNN_ASSERT(2 == inputs.size() || 3 == inputs.size());
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
 | 
						|
        if (inputs.size() == 2) {
 | 
						|
            // copy dims
 | 
						|
            auto &input  = inputs[0]->buffer();
 | 
						|
            auto &output = outputs[0]->buffer();
 | 
						|
            memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
 | 
						|
            output.type = halide_type_of<float>();
 | 
						|
 | 
						|
            // width & height
 | 
						|
            auto roi             = op->main_as_RoiParameters();
 | 
						|
            output.dim[3].extent = roi->pooledWidth();
 | 
						|
            output.dim[2].extent = roi->pooledHeight();
 | 
						|
            output.dim[0].extent = inputs[1]->batch();
 | 
						|
            TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
        }
 | 
						|
 | 
						|
        // backward mode, third input is backward diff, output is the grad of inputs[0]
 | 
						|
        if (inputs.size() == 3) {
 | 
						|
            TensorUtils::copyShape(inputs[0], outputs[0], true);
 | 
						|
            outputs[0]->buffer().type = inputs[0]->getType();
 | 
						|
        }
 | 
						|
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(ROIPoolingComputer, OpType_ROIPooling);
 | 
						|
} // namespace MNN
 |