mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			87 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			87 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeShape.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "shape/SizeComputer.hpp"
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
class ShapeSizeComputer : public SizeComputer {
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(1 <= inputs.size());
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
        auto& ib = inputs[0]->buffer();
 | 
						|
        auto& ob = outputs[0]->buffer();
 | 
						|
 | 
						|
        ob.dimensions = 1;
 | 
						|
        outputs[0]->setType(DataType_DT_INT32);
 | 
						|
        TensorUtils::getDescribe(outputs[0])->dimensionFormat = op->defaultDimentionFormat();
 | 
						|
        auto inputFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
        if (inputFormat == MNN_DATA_FORMAT_NC4HW4 && op->defaultDimentionFormat() == MNN_DATA_FORMAT_NHWC) {
 | 
						|
            // For compability
 | 
						|
            ob.dim[0].extent = 4;
 | 
						|
        } else {
 | 
						|
            ob.dim[0].extent = ib.dimensions;
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(ShapeSizeComputer, OpType_Shape);
 | 
						|
 | 
						|
class ShapeRasterComputer : public SizeComputer {
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
        auto extra  = op->main_as_Extra();
 | 
						|
        if (!extra) {
 | 
						|
            // copy dims
 | 
						|
            MNN_ASSERT(1 <= inputs.size());
 | 
						|
            outputs[0]->buffer().type = inputs[0]->buffer().type;
 | 
						|
            TensorUtils::copyShape(inputs[0], outputs[0], true);
 | 
						|
        } else {
 | 
						|
            if (inputs.size() > 0) {
 | 
						|
                outputs[0]->buffer().type = inputs[0]->buffer().type;
 | 
						|
                TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
            }
 | 
						|
            for (int i = 0; i < extra->attr()->size(); i++) {
 | 
						|
                auto attr = extra->attr()->Get(i);
 | 
						|
                if (attr->key()->str() == "shape") {
 | 
						|
                    outputs[0]->buffer().dimensions = 0;
 | 
						|
                    if (attr->list()->i() != nullptr) {
 | 
						|
                        int len = attr->list()->i()->size();
 | 
						|
                        outputs[0]->buffer().dimensions = len;
 | 
						|
                        for (int j = 0; j < len; j++) {
 | 
						|
                            outputs[0]->setLength(j, attr->list()->i()->Get(j));
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                if (attr->key()->str() == "code") {
 | 
						|
                    outputs[0]->buffer().type.code = (halide_type_code_t)attr->i();
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                if (attr->key()->str() == "bits") {
 | 
						|
                    outputs[0]->buffer().type.bits = attr->i();
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                if (attr->key()->str() == "format") {
 | 
						|
                    TensorUtils::getDescribe(outputs[0])->dimensionFormat = (MNN_DATA_FORMAT)attr->i();
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(ShapeRasterComputer, OpType_Raster);
 | 
						|
} // namespace MNN
 |