mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			291 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  SizeComputer.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "shape/SizeComputer.hpp"
 | 
						|
#include <stdlib.h>
 | 
						|
#include <mutex>
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
#include "utils/InitNet.hpp"
 | 
						|
// #define MNN_DEBUG_TENSOR_SIZE
 | 
						|
namespace MNN {
 | 
						|
void registerShapeOps();
 | 
						|
SizeComputerSuite* SizeComputerSuite::gInstance = nullptr;
 | 
						|
 | 
						|
SizeComputerSuite::~SizeComputerSuite() {
 | 
						|
    for (auto& iter : mRegistry) {
 | 
						|
        delete iter;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void SizeComputerSuite::init() {
 | 
						|
    if (nullptr != gInstance) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    gInstance = new SizeComputerSuite;
 | 
						|
    gInstance->mRegistry.resize(OpType_MAX + 1);
 | 
						|
    ::memset(gInstance->mRegistry.data(), 0, gInstance->mRegistry.size() * sizeof(SizeComputer*));
 | 
						|
    registerShapeOps();
 | 
						|
}
 | 
						|
 | 
						|
SizeComputerSuite* SizeComputerSuite::get() {
 | 
						|
    return gInstance;
 | 
						|
}
 | 
						|
 | 
						|
void SizeComputerSuite::insert(SizeComputer* t, OpType type) {
 | 
						|
    mRegistry[type] = t;
 | 
						|
}
 | 
						|
 | 
						|
SizeComputer* SizeComputerSuite::search(OpType name) {
 | 
						|
    auto iter = mRegistry[name];
 | 
						|
    if (iter == nullptr) {
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
    return iter;
 | 
						|
}
 | 
						|
float SizeComputer::onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                                   const std::vector<Tensor*>& outputs) const {
 | 
						|
    MNN_ASSERT(outputs.size() >= 1);
 | 
						|
    return (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
 | 
						|
}
 | 
						|
 | 
						|
float SizeComputer::computeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                                 const std::vector<Tensor*>& outputs) {
 | 
						|
    auto computeFactory = SizeComputerSuite::get();
 | 
						|
    auto computer       = computeFactory->search(op->type());
 | 
						|
    if (nullptr != computer) {
 | 
						|
        return computer->onComputeFlops(op, inputs, outputs);
 | 
						|
    }
 | 
						|
    if (op->type() == OpType_While && op->main_type() == OpParameter_LoopParam) {
 | 
						|
        auto sumFlops = 0.0f;
 | 
						|
        auto loop = op->main_as_LoopParam();
 | 
						|
        if (nullptr != loop->commands()) {
 | 
						|
            auto cmdSize = loop->commands()->size();
 | 
						|
            for (int i=0; i<cmdSize; ++i) {
 | 
						|
                auto cmd = loop->commands()->GetAs<RegionCommand>(i);
 | 
						|
                auto size = cmd->size()->data();
 | 
						|
                sumFlops += (float)size[0] * (float)size[1] * (float)size[2];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        sumFlops *= (float)loop->loopNumber();
 | 
						|
        return sumFlops / 1024.0f / 1024.0f;
 | 
						|
    }
 | 
						|
    auto sumFlops = 0.0f;
 | 
						|
    for (auto output : outputs) {
 | 
						|
        sumFlops += (float)output->elementSize() / 1024.0f / 1024.0f;
 | 
						|
    }
 | 
						|
    return sumFlops;
 | 
						|
}
 | 
						|
#ifdef MNN_DEBUG_TENSOR_SIZE
 | 
						|
static void _printShape(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                        const std::vector<Tensor*>& outputs) {
 | 
						|
    if (op->name() != nullptr) {
 | 
						|
        MNN_PRINT("===> compute shape: %s, [%s]\n", op->name()->c_str(), MNN::EnumNameOpType(op->type()));
 | 
						|
    } else {
 | 
						|
        MNN_PRINT("===> compute shape:[%s]\n", MNN::EnumNameOpType(op->type()));
 | 
						|
    }
 | 
						|
    if (inputs.size()) {
 | 
						|
        MNN_PRINT("\tInputs:\n");
 | 
						|
        for (auto o : inputs) {
 | 
						|
            MNN_PRINT("\tptr=%p, format=%s, datatype=%d;\t", o, EnumNameMNN_DATA_FORMAT(TensorUtils::getDescribe(o)->dimensionFormat), o->getType().code);
 | 
						|
            if (o->dimensions() == 0) {
 | 
						|
                MNN_PRINT("\t*Scalar*");
 | 
						|
            }
 | 
						|
            for (int i = 0; i < o->dimensions(); ++i) {
 | 
						|
                MNN_PRINT("%d, ", o->length(i));
 | 
						|
            }
 | 
						|
            MNN_PRINT("\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    MNN_PRINT("\tOutputs:\n");
 | 
						|
    for (auto o : outputs) {
 | 
						|
        MNN_PRINT("\tptr=:%p, format=%s, datatype=%d;\t",o, EnumNameMNN_DATA_FORMAT(TensorUtils::getDescribe(o)->dimensionFormat), o->getType().code);
 | 
						|
        if (o->dimensions() == 0) {
 | 
						|
            MNN_PRINT("\t*Scalar*");
 | 
						|
        }
 | 
						|
        for (int i = 0; i < o->dimensions(); ++i) {
 | 
						|
            MNN_PRINT("%d, ", o->length(i));
 | 
						|
        }
 | 
						|
        MNN_PRINT("\n");
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
bool SizeComputer::computeOutputSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                                     const std::vector<Tensor*>& outputs) {
 | 
						|
    auto computeFactory = SizeComputerSuite::get();
 | 
						|
    // When op is nullptr, it means a copy op
 | 
						|
    if (nullptr != op) {
 | 
						|
        if (op->main_type() == OpParameter_Blob) {
 | 
						|
            computeShapeForBlob(op->main_as_Blob(), outputs[0]);
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        // For Loop Op
 | 
						|
        if (op->type() == OpType_While && op->main_type() == OpParameter_LoopParam) {
 | 
						|
            auto loop = op->main_as_LoopParam();
 | 
						|
            if (loop->extraTensorInfos() == nullptr) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            MNN_ASSERT(loop->extraTensorInfos()->size() == outputs.size());
 | 
						|
            for (int i=0; i<outputs.size(); ++i) {
 | 
						|
                auto des = loop->extraTensorInfos()->GetAs<TensorDescribe>(i);
 | 
						|
                MNN_ASSERT(des->blob() != nullptr);
 | 
						|
                auto blob = des->blob();
 | 
						|
                TensorUtils::getDescribe(outputs[i])->dimensionFormat = blob->dataFormat();
 | 
						|
                outputs[i]->setType(blob->dataType());
 | 
						|
                if (blob->dims() != nullptr) {
 | 
						|
                    auto dims = blob->dims()->data();
 | 
						|
                    outputs[i]->buffer().dimensions = blob->dims()->size();
 | 
						|
                    for (int j=0; j<blob->dims()->size(); ++j) {
 | 
						|
                        outputs[i]->setLength(j, dims[j]);
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    outputs[i]->buffer().dimensions = 0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        // Don't support compute shape for control flow op
 | 
						|
        if (op->type() == OpType_While || op->type() == OpType_If) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        // Check -1 input
 | 
						|
        for (auto& t : inputs) {
 | 
						|
            for (int i=0; i < t->dimensions(); ++i) {
 | 
						|
                if (t->length(i) < 0) {
 | 
						|
                    return false;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        auto computer = computeFactory->search(op->type());
 | 
						|
        if (nullptr != computer) {
 | 
						|
            bool ret = computer->onComputeSize(op, inputs, outputs);
 | 
						|
#ifdef MNN_DEBUG_TENSOR_SIZE
 | 
						|
            _printShape(op, inputs, outputs);
 | 
						|
#endif
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Default Set to the same
 | 
						|
    if (inputs.size() >= 1 && (outputs.size() == 1 || outputs.size() == inputs.size())) {
 | 
						|
        if (inputs[0] == outputs[0]) {
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        for (int i=0; i<outputs.size(); ++i) {
 | 
						|
            const auto& ib = inputs[i]->buffer();
 | 
						|
            auto& ob       = outputs[i]->buffer();
 | 
						|
            memcpy(ob.dim, ib.dim, sizeof(halide_dimension_t) * ib.dimensions);
 | 
						|
            ob.dimensions                                         = ib.dimensions;
 | 
						|
            ob.type                                               = ib.type;
 | 
						|
            TensorUtils::getDescribe(outputs[i])->dimensionFormat = TensorUtils::getDescribe(inputs[i])->dimensionFormat;
 | 
						|
        }
 | 
						|
#ifdef MNN_DEBUG_TENSOR_SIZE
 | 
						|
        _printShape(op, inputs, outputs);
 | 
						|
#endif
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    // Not Support
 | 
						|
    MNN_PRINT("Can't compute size for %d, name=%s\n", op->type(), op->name() ? op->name()->c_str() : "");
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<int> SizeComputer::needInputContent(const MNN::Op* op, int inputSize) {
 | 
						|
    auto computeFactory = SizeComputerSuite::get();
 | 
						|
    // When op is nullptr, it means a copy op
 | 
						|
    if (nullptr != op) {
 | 
						|
        // when hasOutputShape = true, deconv last is outputShape
 | 
						|
        if (op->type() == OpType_Deconvolution && op->main_as_Convolution2D() && op->main_as_Convolution2D()->common()) {
 | 
						|
            if (op->main_as_Convolution2D()->common()->hasOutputShape()) {
 | 
						|
                return std::vector<int>{ inputSize - 1 };
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (inputSize > 1 && (op->type() == OpType_Squeeze || op->type() == OpType_Unsqueeze || op->type() == OpType_ReverseSequence || op->type() == OpType_Reverse)) {
 | 
						|
            return std::vector<int>{1};
 | 
						|
        }
 | 
						|
        if (op->type() == OpType_CumSum) {
 | 
						|
            return std::vector<int>{1};
 | 
						|
        }
 | 
						|
#ifdef MNN_SUPPORT_RENDER
 | 
						|
        if (op->type() == OpType_RasterAndInterpolate) {
 | 
						|
            int type = 4;
 | 
						|
            if (op->main_type() == OpParameter_Extra) {
 | 
						|
                auto extra = op->main_as_Extra();
 | 
						|
                if (nullptr != extra->attr()) {
 | 
						|
                    for (int i=0; i<extra->attr()->size(); ++i) {
 | 
						|
                        auto attr = extra->attr()->GetAs<Attribute>(i);
 | 
						|
                        if (attr->key()->str() == "primitiveType") {
 | 
						|
                            type = attr->i();
 | 
						|
                            break;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (type <= 4) {
 | 
						|
                return std::vector<int>{0};
 | 
						|
            }
 | 
						|
            return std::vector<int>{};
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        auto computer = computeFactory->search(op->type());
 | 
						|
        if (nullptr != computer) {
 | 
						|
            return computer->mNeedContentInputIndex;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return std::vector<int>{};
 | 
						|
}
 | 
						|
bool SizeComputer::computeBroadCastDims(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                                 const std::vector<Tensor*>& outputs) {
 | 
						|
    int maxDimensions = inputs[0]->dimensions();
 | 
						|
    int maxIndex = 0;
 | 
						|
    for (int index=1; index < inputs.size(); ++index) {
 | 
						|
        if (inputs[index]->dimensions() > maxDimensions) {
 | 
						|
            maxDimensions = inputs[index]->dimensions();
 | 
						|
            maxIndex = index;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    int outputDims[MNN_MAX_TENSOR_DIM];
 | 
						|
    for (int i = 0; i < maxDimensions; i++) {
 | 
						|
        outputDims[i] = inputs[maxIndex]->length(i);
 | 
						|
    }
 | 
						|
    for (int index=0; index < inputs.size(); ++index) {
 | 
						|
        if (index == maxIndex) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        auto input1 = inputs[index];
 | 
						|
        auto input0 = inputs[maxIndex];
 | 
						|
        const int diffDimension = maxDimensions - input1->dimensions();
 | 
						|
        for (int i = diffDimension; i < maxDimensions; i++) {
 | 
						|
            const int input1Index = i - diffDimension;
 | 
						|
            int dim1 = input1->buffer().dim[input1Index].extent;
 | 
						|
            if (dim1 != outputDims[i] && (dim1 != 1 && outputDims[i] != 1)) {
 | 
						|
                MNN_ERROR("Broad cast error, dim1 = %d, dim2 = %d\n", dim1, outputDims[i]);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (dim1 == outputDims[i]) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            if (dim1 != outputDims[i] && (dim1 == 1 || outputDims[i] == 1)) {
 | 
						|
                outputDims[i] = outputDims[i] * dim1;
 | 
						|
            } else {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    auto& ob       = outputs[0]->buffer();
 | 
						|
    ob.dimensions = maxDimensions;
 | 
						|
    for (int i = 0; i < maxDimensions; i++) {
 | 
						|
        ob.dim[i].extent = outputDims[i];
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
} // namespace MNN
 |