mirror of https://github.com/alibaba/MNN.git
137 lines
5.8 KiB
C++
137 lines
5.8 KiB
C++
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
// edited from tensorflow - non_max_suppression_op.cc by MNN.
|
|
|
|
#include "backend/cpu/CPUNonMaxSuppressionV2.hpp"
|
|
#include <math.h>
|
|
#include <queue>
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "core/Macro.h"
|
|
|
|
namespace MNN {
|
|
|
|
CPUNonMaxSuppressionV2::CPUNonMaxSuppressionV2(Backend* backend, const Op* op) : Execution(backend) {
|
|
// nothing to do
|
|
}
|
|
|
|
// Return intersection-over-union overlap between boxes i and j
|
|
static inline float IOU(const float* boxes, int i, int j) {
|
|
const float yMinI = std::min<float>(boxes[i * 4 + 0], boxes[i * 4 + 2]);
|
|
const float xMinI = std::min<float>(boxes[i * 4 + 1], boxes[i * 4 + 3]);
|
|
const float yMaxI = std::max<float>(boxes[i * 4 + 0], boxes[i * 4 + 2]);
|
|
const float xMaxI = std::max<float>(boxes[i * 4 + 1], boxes[i * 4 + 3]);
|
|
const float yMinJ = std::min<float>(boxes[j * 4 + 0], boxes[j * 4 + 2]);
|
|
const float xMinJ = std::min<float>(boxes[j * 4 + 1], boxes[j * 4 + 3]);
|
|
const float yMaxJ = std::max<float>(boxes[j * 4 + 0], boxes[j * 4 + 2]);
|
|
const float xMaxJ = std::max<float>(boxes[j * 4 + 1], boxes[j * 4 + 3]);
|
|
const float areaI = (yMaxI - yMinI) * (xMaxI - xMinI);
|
|
const float areaJ = (yMaxJ - yMinJ) * (xMaxJ - xMinJ);
|
|
if (areaI <= 0 || areaJ <= 0)
|
|
return 0.0;
|
|
const float intersectionYMin = std::max<float>(yMinI, yMinJ);
|
|
const float intersectionXMin = std::max<float>(xMinI, xMinJ);
|
|
const float intersectionYMax = std::min<float>(yMaxI, yMaxJ);
|
|
const float intersectionXMax = std::min<float>(xMaxI, xMaxJ);
|
|
const float intersectionArea = std::max<float>(intersectionYMax - intersectionYMin, 0.0) *
|
|
std::max<float>(intersectionXMax - intersectionXMin, 0.0);
|
|
return intersectionArea / (areaI + areaJ - intersectionArea);
|
|
}
|
|
|
|
void NonMaxSuppressionSingleClasssImpl(const Tensor* decodedBoxes, const float* scores, int maxDetections,
|
|
float iouThreshold, float scoreThreshold, std::vector<int32_t>* selected) {
|
|
MNN_ASSERT(iouThreshold >= 0.0f && iouThreshold <= 1.0f);
|
|
MNN_ASSERT(decodedBoxes->dimensions() == 2);
|
|
const int numBoxes = decodedBoxes->length(0);
|
|
MNN_ASSERT(decodedBoxes->length(1) == 4)
|
|
|
|
const int outputNum = std::min(maxDetections, numBoxes);
|
|
std::vector<float> scoresData(numBoxes);
|
|
std::copy_n(scores, numBoxes, scoresData.begin());
|
|
|
|
struct Candidate {
|
|
int boxIndex;
|
|
float score;
|
|
};
|
|
|
|
auto cmp = [](const Candidate bsI, const Candidate bsJ) { return bsI.score < bsJ.score; };
|
|
|
|
std::priority_queue<Candidate, std::deque<Candidate>, decltype(cmp)> candidatePriorityQueue(cmp);
|
|
|
|
for (int i = 0; i < scoresData.size(); ++i) {
|
|
if (scoresData[i] > scoreThreshold) {
|
|
candidatePriorityQueue.emplace(Candidate({i, scoresData[i]}));
|
|
}
|
|
}
|
|
|
|
// std::vector<float> selectedScores;
|
|
Candidate nextCandidate;
|
|
float iou, originalScore;
|
|
|
|
const auto boxesPtr = decodedBoxes->host<float>();
|
|
while (selected->size() < outputNum && !candidatePriorityQueue.empty()) {
|
|
nextCandidate = candidatePriorityQueue.top();
|
|
originalScore = nextCandidate.score;
|
|
candidatePriorityQueue.pop();
|
|
|
|
// Overlapping boxes are likely to have similar scores,
|
|
// therefore we iterate through the previously selected boxes backwards
|
|
// in order to see if `next_candidate` should be suppressed.
|
|
bool shouldSelect = true;
|
|
for (int j = (int)selected->size() - 1; j >= 0; --j) {
|
|
iou = IOU(boxesPtr, nextCandidate.boxIndex, selected->at(j));
|
|
if (iou == 0.0) {
|
|
continue;
|
|
}
|
|
if (iou > iouThreshold) {
|
|
shouldSelect = false;
|
|
}
|
|
}
|
|
|
|
if (shouldSelect) {
|
|
selected->push_back(nextCandidate.boxIndex);
|
|
// selectedScores.push_back(nextCandidate.score);
|
|
}
|
|
}
|
|
}
|
|
|
|
ErrorCode CPUNonMaxSuppressionV2::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
std::vector<int> selected;
|
|
const int maxDetections = inputs[2]->host<int32_t>()[0];
|
|
float iouThreshold = 0, scoreThreshold = std::numeric_limits<float>::lowest();
|
|
if (inputs.size() > 3) {
|
|
iouThreshold = inputs[3]->host<float>()[0];
|
|
}
|
|
if (inputs.size() > 4) {
|
|
scoreThreshold = inputs[4]->host<float>()[0];
|
|
}
|
|
const auto scores = inputs[1]->host<float>();
|
|
NonMaxSuppressionSingleClasssImpl(inputs[0], scores, maxDetections, iouThreshold, scoreThreshold, &selected);
|
|
std::copy_n(selected.begin(), selected.size(), outputs[0]->host<int32_t>());
|
|
for (int i = selected.size(); i < outputs[0]->elementSize(); i++) {
|
|
outputs[0]->host<int32_t>()[i] = -1;
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class CPUNonMaxSuppressionV2Creator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const MNN::Op* op, Backend* backend) const {
|
|
return new CPUNonMaxSuppressionV2(backend, op);
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUNonMaxSuppressionV2Creator, OpType_NonMaxSuppressionV2);
|
|
} // namespace MNN
|