mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			99 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  CPUQuantizedAvgPool.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2018/08/14.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
#include "backend/cpu/CPUBackend.hpp"
 | 
						|
#ifdef MNN_SUPPORT_DEPRECATED_OP
 | 
						|
#include "backend/cpu/CPUQuantizedAvgPool.hpp"
 | 
						|
#include "backend/cpu/CPUQuantizationUtils.hpp"
 | 
						|
#include "backend/cpu/compute/CommonOptFunction.h"
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "backend/cpu/compute/OptimizedComputer.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
 | 
						|
CPUQuantizedAvgPool::CPUQuantizedAvgPool(Backend *backend, const Op *CPUQuantizedAvgPoolOp) : Execution(backend) {
 | 
						|
    auto CPUQuantizedAvgPool = CPUQuantizedAvgPoolOp->main_as_QuantizedAvgPool();
 | 
						|
    mIstflite                = (CPUQuantizedAvgPool->modelFormat() == ModeFormat_TFLITE);
 | 
						|
    mKernelWidth             = CPUQuantizedAvgPool->kernelX();
 | 
						|
    mKernelHeight            = CPUQuantizedAvgPool->kernelY();
 | 
						|
    mPadWidth                = CPUQuantizedAvgPool->padX();
 | 
						|
    mPadHeight               = CPUQuantizedAvgPool->padY();
 | 
						|
    mStrideWidth             = CPUQuantizedAvgPool->strideX();
 | 
						|
    mStrideHeight            = CPUQuantizedAvgPool->strideY();
 | 
						|
    mPadMode                 = CPUQuantizedAvgPool->padType();
 | 
						|
    mOutputActivationMin     = CPUQuantizedAvgPool->outputActivationMin();
 | 
						|
    mOutputActivationMax     = CPUQuantizedAvgPool->outputActivationMax();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ErrorCode CPUQuantizedAvgPool::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | 
						|
 | 
						|
    auto input  = inputs[0];
 | 
						|
    auto output = outputs[0];
 | 
						|
 | 
						|
    MNN_ASSERT(input->buffer().dimensions == 4);
 | 
						|
 | 
						|
    int32_t inBatch   = input->buffer().dim[0].extent;
 | 
						|
    int32_t inRows    = input->buffer().dim[2].extent;
 | 
						|
    int32_t inCols    = input->buffer().dim[3].extent;
 | 
						|
    int32_t inChannel = input->buffer().dim[1].extent;
 | 
						|
 | 
						|
    const int32_t windowRows = mKernelHeight;
 | 
						|
    const int32_t windowCols = mKernelWidth;
 | 
						|
    const int32_t rowStride  = mStrideHeight;
 | 
						|
    const int32_t colStride  = mStrideWidth;
 | 
						|
    int32_t outHeight  = output->buffer().dim[2].extent;
 | 
						|
    int32_t outWidth   = output->buffer().dim[3].extent;
 | 
						|
 | 
						|
    switch (mPadMode) {
 | 
						|
        case PoolPadType_CAFFE:
 | 
						|
            MNN_ASSERT(false);
 | 
						|
            break;
 | 
						|
        case PoolPadType_VALID:
 | 
						|
            mPadHeight = mPadWidth = 0;
 | 
						|
            break;
 | 
						|
        case PoolPadType_SAME:
 | 
						|
            auto widthNeeded  = (outWidth - 1) * colStride + windowCols - inCols;
 | 
						|
            auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows;
 | 
						|
            mPadWidth         = widthNeeded > 0 ? widthNeeded / 2 : 0;
 | 
						|
            mPadHeight        = heightNeeded > 0 ? heightNeeded / 2 : 0;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    mInputDims = {inBatch, inRows, inCols, inChannel};
 | 
						|
    mOutputDims = {output->batch(), output->height(), output->width(), output->channel()};
 | 
						|
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ErrorCode CPUQuantizedAvgPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | 
						|
 | 
						|
 | 
						|
    uint8_t *inputPtr  = inputs[0]->host<uint8_t>();
 | 
						|
    uint8_t *outputPtr = outputs[0]->host<uint8_t>();
 | 
						|
 | 
						|
    Optimized::AveragePool(inputPtr, mInputDims, mStrideWidth, mStrideHeight, mPadWidth, mPadHeight, mKernelWidth,
 | 
						|
                               mKernelHeight, mOutputActivationMin, mOutputActivationMax, outputPtr, mOutputDims);
 | 
						|
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
class CPUQuantizedAvgPoolCreator : public CPUBackend::Creator {
 | 
						|
public:
 | 
						|
    virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | 
						|
                                const MNN::Op *op, Backend *backend) const {
 | 
						|
        return new CPUQuantizedAvgPool(backend, op);
 | 
						|
    }
 | 
						|
};
 | 
						|
} // namespace MNN
 | 
						|
#endif
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
REGISTER_CPU_OP_CREATOR_OLD(CPUQuantizedAvgPoolCreator, OpType_QuantizedAvgPool);
 | 
						|
};
 |