mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			299 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			299 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeStridedSlice.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <array>
 | 
						|
#include "shape/SizeComputer.hpp"
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
namespace MNN {
 | 
						|
class StridedSliceComputer : public SizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
 | 
						|
                               const std::vector<Tensor *> &outputs) const override {
 | 
						|
        MNN_ASSERT(3 <= inputs.size());
 | 
						|
        MNN_ASSERT(5 >= inputs.size());
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
        
 | 
						|
        Tensor *input            = inputs[0];
 | 
						|
        const int inputDim = input->buffer().dimensions;
 | 
						|
        if (inputDim <= 0 || inputDim > MNN_MAX_TENSOR_DIM) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        auto parameter = op->main_as_StridedSliceParam();
 | 
						|
        int32_t beginMask = parameter->beginMask();
 | 
						|
        int32_t endMask = parameter->endMask();
 | 
						|
        int32_t shrinkAxisMask = parameter->shrinkAxisMask();
 | 
						|
        int32_t ellipsisMask = parameter->ellipsisMask();
 | 
						|
        int32_t newAxisMask = parameter->newAxisMask();
 | 
						|
        int32_t fromType = parameter->fromType();
 | 
						|
 | 
						|
        // write to input
 | 
						|
        if (fromType == 0 && inputs.size() == 5) {
 | 
						|
            TensorUtils::copyShape(inputs[0], outputs[0], true);
 | 
						|
            outputs[0]->buffer().type = inputs[0]->buffer().type;
 | 
						|
            TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        if (ellipsisMask && (ellipsisMask & (ellipsisMask - 1))) {
 | 
						|
            MNN_ERROR("only one non-zero bit is allowed in ellipsisMask\n");
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        Tensor *begin   = inputs[1];
 | 
						|
        Tensor *end     = inputs[2];
 | 
						|
 | 
						|
        int32_t strideSize = begin->length(0);
 | 
						|
        auto output    = outputs[0];
 | 
						|
 | 
						|
        MNN_ASSERT(begin->buffer().dimensions == end->buffer().dimensions);
 | 
						|
        int32_t inputShape[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
        int32_t begins[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
        int32_t ends[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
        int32_t strides[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
        int32_t axes[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
        int32_t beginMasks[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
        int32_t endMasks[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
        int32_t shrinkAxisMasks[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
        int32_t newAxisMasks[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
 | 
						|
        for (int i = 0; i < inputDim; i++) {
 | 
						|
            inputShape[i] = input->length(i);
 | 
						|
        }
 | 
						|
 | 
						|
        for (int i = 0; i < strideSize; i++) {
 | 
						|
            beginMasks[i] = beginMask & (1 << i);
 | 
						|
        }
 | 
						|
        for (int i = 0; i < strideSize; i++) {
 | 
						|
            endMasks[i] = endMask & (1 << i);
 | 
						|
        }
 | 
						|
        for (int i = 0; i < strideSize; i++) {
 | 
						|
            shrinkAxisMasks[i] = shrinkAxisMask & (1 << i);
 | 
						|
        }
 | 
						|
        for (int i = 0; i < strideSize; i++) {
 | 
						|
            newAxisMasks[i] = newAxisMask & (1 << i);
 | 
						|
        }
 | 
						|
 | 
						|
        for(int i = 0; i < inputDim; i++) {
 | 
						|
            begins[i] = 0;
 | 
						|
            ends[i] = inputShape[i];
 | 
						|
            strides[i] = 1;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // broadcast begin end stride axis param
 | 
						|
        if (fromType == 1) {
 | 
						|
 | 
						|
            Tensor *axis = nullptr;
 | 
						|
            if(inputs.size() >= 4) {
 | 
						|
                axis = inputs[3];
 | 
						|
            }
 | 
						|
 | 
						|
            Tensor *step = nullptr;
 | 
						|
            if(inputs.size() == 5) {
 | 
						|
                step = inputs[4];
 | 
						|
            }
 | 
						|
 | 
						|
            for(int i = 0; i < inputDim; i++) {
 | 
						|
                begins[i] = 0;
 | 
						|
                ends[i] = inputShape[i];
 | 
						|
                strides[i] = 1;
 | 
						|
            }
 | 
						|
        
 | 
						|
            for (int i = 0; i < strideSize; i++) {
 | 
						|
                auto temp_axis = i;
 | 
						|
                if(axis != nullptr) {
 | 
						|
                    temp_axis = axis->host<int>()[i];
 | 
						|
                    temp_axis = temp_axis < 0 ? (temp_axis + inputDim) : temp_axis;
 | 
						|
                    MNN_ASSERT(temp_axis < MNN_MAX_TENSOR_DIM);
 | 
						|
                }
 | 
						|
                if(step != nullptr) {
 | 
						|
                    strides[temp_axis] = step->host<int>()[i];
 | 
						|
                }
 | 
						|
                
 | 
						|
                auto shape = inputShape[temp_axis];
 | 
						|
                auto temp_value = begin->host<int>()[i];
 | 
						|
                temp_value = temp_value < 0 ? (temp_value + shape) : temp_value;
 | 
						|
                begins[temp_axis] = temp_value;
 | 
						|
                
 | 
						|
                temp_value = end->host<int>()[i];
 | 
						|
                temp_value = temp_value < 0 ? (temp_value + shape) : temp_value;
 | 
						|
                ends[temp_axis] = temp_value;
 | 
						|
            }
 | 
						|
            strideSize = inputDim;
 | 
						|
 | 
						|
        } else if(fromType == 0) {
 | 
						|
 | 
						|
            Tensor *strided = nullptr;
 | 
						|
            if(inputs.size() >= 4) {
 | 
						|
                strided = inputs[3];
 | 
						|
                MNN_ASSERT(begin->buffer().dimensions == strided->buffer().dimensions);
 | 
						|
            }
 | 
						|
            // deal ellipsis, expand strides info
 | 
						|
            if (ellipsisMask > 0) {
 | 
						|
                int32_t beginMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
                int32_t endMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
                int32_t shrinkAxisMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
                int32_t newAxisMasksTmp[MNN_MAX_TENSOR_DIM] = { 0 };
 | 
						|
                // expand stride info
 | 
						|
                int ellipsisPos = -1;
 | 
						|
                for (int i = 0; i < strideSize; i++) {
 | 
						|
                    int temp = ellipsisMask & (1 << i);
 | 
						|
                    if (temp != 0) {
 | 
						|
                        ellipsisPos = i;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                MNN_ASSERT(ellipsisPos >= 0 && ellipsisPos < strideSize);
 | 
						|
                /*
 | 
						|
                Example: foo's dim is [2, 3, 4, 5, 6, 7], foo[0:2, :, 3:5, 3:6]:
 | 
						|
                    1. strideSize = 4, inputDim = 6, ellipsis = 2(0010)
 | 
						|
                    2. left part: 0:2, right part: 3:5, 3:6
 | 
						|
                    3. expand: foo[0:2, 0:3, 0:4, 3:5, 3:6]
 | 
						|
                */
 | 
						|
                int ellpsisSize = inputDim - strideSize, strideIdx = 0;
 | 
						|
                for (int i = 0; i < inputDim; i++) {
 | 
						|
                    if (i == ellipsisPos) {
 | 
						|
                        strideIdx++;
 | 
						|
                    }
 | 
						|
                    if (i >= ellipsisPos && i <= ellipsisPos + ellpsisSize) {
 | 
						|
                        begins[i] = 0;
 | 
						|
                        ends[i] = inputShape[i];
 | 
						|
                        strides[i] = 1;
 | 
						|
                        beginMasksTmp[i] = 0;
 | 
						|
                        endMasksTmp[i] = 0;
 | 
						|
                        shrinkAxisMasksTmp[i] = 0;
 | 
						|
                    } else {
 | 
						|
                        begins[i] = begin->host<int32_t>()[strideIdx];
 | 
						|
                        ends[i] = end->host<int32_t>()[strideIdx];
 | 
						|
                        if(strided != nullptr) {
 | 
						|
                            strides[i] = strided->host<int32_t>()[strideIdx];
 | 
						|
                        }
 | 
						|
                        beginMasksTmp[i] = beginMasks[strideIdx];
 | 
						|
                        endMasksTmp[i] = endMasks[strideIdx];
 | 
						|
                        shrinkAxisMasksTmp[i] = shrinkAxisMasks[strideIdx];
 | 
						|
                        newAxisMasksTmp[i] = newAxisMasks[strideIdx++];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for (int i = 0; i < inputDim; i++) {
 | 
						|
                    beginMasks[i] = beginMasksTmp[i];
 | 
						|
                    endMasks[i] = endMasksTmp[i];
 | 
						|
                    shrinkAxisMasks[i] = shrinkAxisMasksTmp[i];
 | 
						|
                    newAxisMasks[i] = newAxisMasksTmp[i];
 | 
						|
                }
 | 
						|
                strideSize = inputDim;
 | 
						|
            } else {
 | 
						|
                for (int i = 0; i < strideSize; i++) {
 | 
						|
                    begins[i] = begin->host<int>()[i];
 | 
						|
                    ends[i] = end->host<int>()[i];
 | 
						|
                    strides[i] = strided->host<int>()[i];
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        int32_t beginShape[MNN_MAX_TENSOR_DIM];
 | 
						|
        int32_t endShape[MNN_MAX_TENSOR_DIM];
 | 
						|
        int32_t stridedShape[MNN_MAX_TENSOR_DIM];
 | 
						|
        int32_t outputShape[MNN_MAX_TENSOR_DIM];
 | 
						|
        int32_t outputShapeShrinked[MNN_MAX_TENSOR_DIM];
 | 
						|
 | 
						|
        int outputShapeSize = 0;
 | 
						|
        int outputShapeShrinkSize = 0;
 | 
						|
        int strideDealDims = 0;
 | 
						|
 | 
						|
        auto beginAndEndShapeLimit = [](int shape, int dimSize, bool exclusive) -> int {
 | 
						|
            int maxShape = dimSize - 1, minShape = -dimSize;
 | 
						|
            if (exclusive) {
 | 
						|
                ++maxShape;
 | 
						|
                --minShape;
 | 
						|
            }
 | 
						|
            shape = (shape > maxShape ? maxShape : shape);
 | 
						|
            shape = (shape < minShape ? minShape : shape);
 | 
						|
            if (shape < 0) {
 | 
						|
                shape += dimSize;
 | 
						|
            }
 | 
						|
            return shape;
 | 
						|
        };
 | 
						|
 | 
						|
        int inputDimOffset = 0;
 | 
						|
        for (int i = 0; i < strideSize; i++) {
 | 
						|
            if (newAxisMasks[i] > 0) {
 | 
						|
                outputShape[outputShapeSize] = 1;
 | 
						|
                outputShapeSize++;
 | 
						|
                outputShapeShrinked[outputShapeShrinkSize] = 1;
 | 
						|
                outputShapeShrinkSize++;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            auto inputDim = inputShape[inputDimOffset++];
 | 
						|
            strideDealDims++;
 | 
						|
            stridedShape[i] = shrinkAxisMasks[i] > 0 ? 1 : strides[i];
 | 
						|
            if (beginMasks[i] > 0) {
 | 
						|
                beginShape[i] = stridedShape[i] < 0 ? inputDim - 1 : 0;
 | 
						|
            } else {
 | 
						|
                beginShape[i] = stridedShape[i] < 0 ? beginAndEndShapeLimit(begins[i], inputDim, false) :
 | 
						|
                                                      std::min(inputDim, begins[i]);
 | 
						|
            }
 | 
						|
            if (beginShape[i] < 0) {
 | 
						|
                auto temp = -beginShape[i];
 | 
						|
                beginShape[i] = UP_DIV(temp, inputDim) * inputDim + beginShape[i];
 | 
						|
            }
 | 
						|
            if (endMasks[i] > 0) {
 | 
						|
                endShape[i] = stridedShape[i] < 0 ? -1 : inputDim;
 | 
						|
            } else {
 | 
						|
                endShape[i] = stridedShape[i] < 0 ? std::max(-1, std::min(inputDim, ends[i])) :
 | 
						|
                                                    beginAndEndShapeLimit(ends[i], inputDim, true);
 | 
						|
            }
 | 
						|
 | 
						|
            if (endShape[i] < beginShape[i]) {
 | 
						|
                int t         = beginShape[i];
 | 
						|
                beginShape[i] = endShape[i];
 | 
						|
                endShape[i]   = t;
 | 
						|
 | 
						|
                MNN_ASSERT(stridedShape[i] != 0);
 | 
						|
                if (stridedShape[i] < 0) {
 | 
						|
                    stridedShape[i] = -stridedShape[i];
 | 
						|
                } else {
 | 
						|
                    // MNN_ASSERT(false);  // TODO: should be the wrong case, but there is one in linfeng's faster
 | 
						|
                    // rcnn face model
 | 
						|
                    beginShape[i] = endShape[i]; // TODO: temp solution
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (shrinkAxisMasks[i] == 0) {
 | 
						|
                int size = (endShape[i] - beginShape[i] - 1) / stridedShape[i] + 1;
 | 
						|
                outputShape[outputShapeSize] = size;
 | 
						|
                outputShapeSize++;
 | 
						|
                outputShapeShrinked[outputShapeShrinkSize] = size;
 | 
						|
                outputShapeShrinkSize++;
 | 
						|
            } else {
 | 
						|
                outputShape[outputShapeSize] = std::min(1, inputDim);
 | 
						|
                outputShapeSize++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        int outputDimensionsWithoutRemain = strideDealDims;
 | 
						|
        int dimensionRemained             = input->buffer().dimensions - strideDealDims;
 | 
						|
 | 
						|
        for (int i = 0; i < dimensionRemained; i++) {
 | 
						|
            outputShapeShrinked[outputShapeShrinkSize] = input->buffer().dim[outputDimensionsWithoutRemain + i].extent;
 | 
						|
            outputShapeShrinkSize++;
 | 
						|
        }
 | 
						|
 | 
						|
        output->buffer().dimensions    = outputShapeShrinkSize;
 | 
						|
        output->buffer().type          = input->buffer().type;
 | 
						|
        for (int i = 0; i < outputShapeShrinkSize; i++) {
 | 
						|
            output->buffer().dim[i].extent = outputShapeShrinked[i];
 | 
						|
        }
 | 
						|
 | 
						|
        TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE_INPUTS(StridedSliceComputer, OpType_StridedSlice, (std::vector<int>{1,2,3}));
 | 
						|
} // namespace MNN
 |