mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			72 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeWhere.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include "shape/SizeComputer.hpp"
 | 
						|
#include "core/Macro.h"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
#define MNN_WHERE_OLD_VERSION
 | 
						|
 | 
						|
template <typename T>
 | 
						|
int _count(Tensor* t) {
 | 
						|
    const T* ptr = t->host<T>();
 | 
						|
    int count = 0;
 | 
						|
    for (int i = 0; i < t->elementSize(); i++) {
 | 
						|
        count += (ptr[i] > 0);
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
class WhereSizeComputer : public SizeComputer {
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(1 == inputs.size());
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
        auto& ib = inputs[0]->buffer();
 | 
						|
        auto& ob = outputs[0]->buffer();
 | 
						|
        ob.dimensions = 2;
 | 
						|
        ob.dim[0].extent = inputs[0]->elementSize();
 | 
						|
        ob.dim[1].extent = ib.dimensions;
 | 
						|
        TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
        outputs[0]->buffer().type = halide_type_of<int32_t>();
 | 
						|
        auto param = op->main_as_Extra();
 | 
						|
        if (param == nullptr) {
 | 
						|
            // support old version
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        // For zeroshape input
 | 
						|
        if (nullptr == inputs[0]->host<void>()) {
 | 
						|
            ob.dim[0].extent = 0;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        int count = 0;
 | 
						|
        if (ib.type == halide_type_of<float>()) {
 | 
						|
            count = _count<float>(inputs[0]);
 | 
						|
        } else if (ib.type == halide_type_of<int32_t>()) {
 | 
						|
            count = _count<int32_t>(inputs[0]);
 | 
						|
        } else if (ib.type == halide_type_of<uint8_t>()) {
 | 
						|
            count = _count<uint8_t>(inputs[0]);
 | 
						|
        } else {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        if (count > 0) {
 | 
						|
            ob.dim[0].extent = count;
 | 
						|
        } else {
 | 
						|
            // When no true element is found, the second demision should be kept, other than squeezed.
 | 
						|
            ob.dimensions = 2;
 | 
						|
            ob.dim[0].extent = 0;
 | 
						|
            ob.dim[1].extent = ib.dimensions;
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE_INPUTS(WhereSizeComputer, OpType_Where, std::vector<int>{0});
 | 
						|
} // namespace MNN
 |