mirror of https://github.com/alibaba/MNN.git
146 lines
6.7 KiB
C++
146 lines
6.7 KiB
C++
//
|
|
// CPUPool.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/07/15.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "core/Concurrency.h"
|
|
#include "backend/cpu/CPUPool.hpp"
|
|
#include "compute/CommonOptFunction.h"
|
|
#include "math/Vec.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
using Vec4 = MNN::Math::Vec<float, 4>;
|
|
using Vec16 = MNN::Math::Vec<int8_t, 16>;
|
|
|
|
namespace MNN {
|
|
|
|
class CPUPool : public Execution {
|
|
public:
|
|
CPUPool(Backend *b, const Pool *parameter, void* func, int bytes, bool returnRedice) : MNN::Execution(b), mParameter(parameter) {
|
|
if(returnRedice){
|
|
mComputeRedice = (decltype(mComputeRedice))func;
|
|
}else{
|
|
mCompute = (decltype(mCompute))func;
|
|
}
|
|
mBytes = bytes;
|
|
}
|
|
virtual ~CPUPool() = default;
|
|
virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
|
|
auto layer = mParameter;
|
|
int strideWidth = layer->strideX();
|
|
int strideHeight = layer->strideY();
|
|
int padWidth = layer->padX();
|
|
int padHeight = layer->padY();
|
|
auto core = static_cast<CPUBackend*>(backend())->functions();
|
|
MNN_ASSERT(DataType_DT_INT8 != TensorUtils::getDescribe(inputs[0])->type);
|
|
|
|
// edit const if global
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
int kernelWidth = layer->kernelX();
|
|
int kernelHeight = layer->kernelY();
|
|
if (layer->isGlobal()) {
|
|
kernelWidth = input->width();
|
|
kernelHeight = input->height();
|
|
strideWidth = input->width();
|
|
strideHeight = input->height();
|
|
padWidth = 0;
|
|
padHeight = 0;
|
|
}
|
|
if (layer->padType() == PoolPadType_SAME) {
|
|
int padNeededWidth = (output->width() - 1) * strideWidth + kernelWidth - input->width();
|
|
int padNeededHeight = (output->height() - 1) * strideHeight + kernelHeight - input->height();
|
|
padWidth = padNeededWidth > 0 ? padNeededWidth / 2 : 0;
|
|
padHeight = padNeededHeight > 0 ? padNeededHeight / 2 : 0;
|
|
} else if (layer->padType() == PoolPadType_VALID) {
|
|
padWidth = padHeight = 0;
|
|
}
|
|
auto totalDepth = input->batch() * UP_DIV(input->channel(), core->pack);
|
|
auto inputPlaneStride = core->pack * input->width() * input->height();
|
|
auto outputPlaneStride = core->pack * output->width() * output->height();
|
|
int threadNumber = ((CPUBackend *)backend())->threadNumber();
|
|
auto padType = layer->padType();
|
|
auto countType = layer->countType();
|
|
if (layer->pads() != nullptr && padType == PoolPadType_CAFFE) {
|
|
padType = PoolPadType_VALID;
|
|
}
|
|
if(outputs.size() == 2){
|
|
mFunction = std::make_pair(threadNumber, [=](int tId) {
|
|
for (int channel = (int)tId; channel < totalDepth; channel += threadNumber) {
|
|
auto inputData = input->host<uint8_t>();
|
|
auto outputData = output->host<uint8_t>();
|
|
auto rediceData = outputs[1]->host<uint8_t>();
|
|
// run
|
|
mComputeRedice(inputData + channel * inputPlaneStride * mBytes, input->width(), input->height(),
|
|
outputData + outputPlaneStride * channel * mBytes, output->width(), output->height(), kernelWidth,
|
|
kernelHeight, strideWidth, strideHeight, padWidth, padHeight, padType, countType, rediceData + outputPlaneStride * channel * mBytes);
|
|
}
|
|
});
|
|
}else{
|
|
mFunction = std::make_pair(threadNumber, [=](int tId) {
|
|
for (int channel = (int)tId; channel < totalDepth; channel += threadNumber) {
|
|
auto inputData = input->host<uint8_t>();
|
|
auto outputData = output->host<uint8_t>();
|
|
// run
|
|
mCompute(inputData + channel * inputPlaneStride * mBytes, input->width(), input->height(),
|
|
outputData + outputPlaneStride * channel * mBytes, output->width(), output->height(), kernelWidth,
|
|
kernelHeight, strideWidth, strideHeight, padWidth, padHeight, padType, countType);
|
|
}
|
|
});
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
|
|
MNN_CONCURRENCY_BEGIN(tId, mFunction.first) {
|
|
mFunction.second((int)tId);
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
private:
|
|
const Pool *mParameter;
|
|
void(*mCompute)(const void* channelInput, int inputWidth, int inputHeight, void *channelOutput,
|
|
int outputWidth, int outputHeight, int kernelWidth, int kernelHeight, int strideWidth,
|
|
int strideHeight, int padWidth, int padHeight, int padType, int countType);
|
|
void(*mComputeRedice)(const void* channelInput, int inputWidth, int inputHeight, void *channelOutput,
|
|
int outputWidth, int outputHeight, int kernelWidth, int kernelHeight, int strideWidth,
|
|
int strideHeight, int padWidth, int padHeight, int padType, int countType, void *rediceOutput);
|
|
std::pair<int, std::function<void(int)> > mFunction;
|
|
int mBytes;
|
|
};
|
|
class CPUPoolCreator : public CPUBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
void* func = nullptr;
|
|
bool returnRedice = false;
|
|
if (inputs[0]->getType() == halide_type_of<int8_t>()) {
|
|
if (op->main_as_Pool()->type() == PoolType_AVEPOOL) {
|
|
func = (void*)(poolingAvg<int8_t, Vec16, 4>);
|
|
} else {
|
|
func = (void*)(poolingMax<int8_t, Vec16, 4, -128>);
|
|
}
|
|
return new CPUPool(backend, op->main_as_Pool(), func, 1, returnRedice);
|
|
}
|
|
auto core = static_cast<CPUBackend*>(backend)->functions();
|
|
if (op->main_as_Pool()->type() == PoolType_AVEPOOL) {
|
|
func = (void*)(core->MNNPoolingAvg);
|
|
} else {
|
|
func = (void*)(core->MNNPoolingMax);
|
|
if(outputs.size() == 2){
|
|
func = (void*)(core->MNNPoolingMaxWithRedice);
|
|
returnRedice = true;
|
|
}
|
|
}
|
|
return new CPUPool(backend, op->main_as_Pool(), func, core->bytes, returnRedice);
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUPoolCreator, OpType_Pooling);
|
|
|
|
} // namespace MNN
|