MNN/source/backend/cpu/CPUScaleInt8.cpp

165 lines
7.1 KiB
C++

//
// CPUScale.cpp
// MNN
//
// Created by MNN on 2023/05/04.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "math.h"
#include "CPUScaleInt8.hpp"
#include "CPUBackend.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "core/Concurrency.h"
#include "core/OpCommonUtils.hpp"
#include "compute/CommonOptFunction.h"
#include "backend/cpu/compute/Int8FunctionsOpt.h"
namespace MNN {
CPUScaleInt8::CPUScaleInt8(const Op* op, Backend* bn) : MNN::Execution(bn) {
auto scale = op->main_as_Scale();
auto core = static_cast<CPUBackend*>(bn)->functions();
bool external = USE_EXTERNAL_DATA(scale);
int outputCount = 0;
if (external) {
outputCount = static_cast<int>(scale->external()->Get(1) / sizeof(float));
} else {
outputCount = scale->scaleData()->size();
}
mScaleBias.reset(Tensor::createDevice<uint8_t>({2, UP_DIV(outputCount, core->pack) * core->pack * core->bytes}));
auto res = bn->onAcquireBuffer(mScaleBias.get(), Backend::STATIC);
if (!res) {
MNN_ERROR("Error for alloc buffer for CPUScale\n");
mScaleBias = nullptr;
mValid = false;
return;
}
::memset(mScaleBias->host<float>(), 0, mScaleBias->size());
if (external) {
bool hasBias = scale->external()->size() > 2;
if (hasBias) {
if (core->bytes < 4) {
std::unique_ptr<Tensor> tmpTensor(Tensor::createDevice<float>({outputCount * 2}));
auto status = backend()->onAcquireBuffer(tmpTensor.get(), Backend::STATIC);
if (!status) {
MNN_ERROR("Out of memory when tmpTensor is acquired in CPUScale.\n");
return;
}
char* scalePtr = tmpTensor->host<char>();
char* biasPtr = scalePtr + outputCount * sizeof(float);
OpCommonUtils::loadExternalDatas(bn, {scalePtr, biasPtr}, scale->external()->data());
core->MNNFp32ToLowp(tmpTensor->host<float>(), mScaleBias->host<int16_t>(), outputCount * 2);
} else {
OpCommonUtils::loadExternalDatas(bn, {mScaleBias->host<char>(), mScaleBias->host<char>() + mScaleBias->length(1)}, scale->external()->data());
}
} else {
if (core->bytes < 4) {
std::unique_ptr<Tensor> tmpTensor(Tensor::createDevice<float>({outputCount}));
auto status = backend()->onAcquireBuffer(tmpTensor.get(), Backend::STATIC);
if (!status) {
MNN_ERROR("Out of memory when tmpTensor is acquired in CPUScale.\n");
return;
}
OpCommonUtils::loadExternalDatas(bn, {tmpTensor->host<char>()}, scale->external()->data());
core->MNNFp32ToLowp(tmpTensor->host<float>(), mScaleBias->host<int16_t>(), outputCount);
} else {
OpCommonUtils::loadExternalDatas(bn, {mScaleBias->host<char>()}, scale->external()->data());
}
}
} else {
std::vector<float> scaleDataQuant(outputCount);
for (int i = 0; i < outputCount; ++i) {
scaleDataQuant[i] = 1.0 / scale->scaleData()->data()[i];
}
if (core->bytes < 4) {
core->MNNFp32ToLowp(scale->scaleData()->data(), mScaleBias->host<int16_t>(), outputCount);
} else {
::memcpy(mScaleBias->host<float>(), scale->scaleData()->data(), outputCount * sizeof(float));
}
if (nullptr != scale->biasData() && nullptr != scale->biasData()->data()) {
auto biasPtr = mScaleBias->host<uint8_t>() + mScaleBias->length(1);
if (core->bytes < 4) {
core->MNNFp32ToLowp(scale->biasData()->data(), reinterpret_cast<int16_t*>(biasPtr), outputCount);
} else {
::memcpy(biasPtr, scale->biasData()->data(), outputCount * sizeof(float));
}
}
}
}
CPUScaleInt8::~CPUScaleInt8() {
if (nullptr != mScaleBias) {
backend()->onReleaseBuffer(mScaleBias.get(), Backend::STATIC);
}
}
ErrorCode CPUScaleInt8::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
auto core = static_cast<CPUBackend*>(backend())->functions();
int outputCount = output->channel();
mInputQuantInfo = TensorUtils::getQuantInfo(input);
mOutputQuantInfo = TensorUtils::getQuantInfo(output);
float inputScale = mInputQuantInfo[0], outputScale = mOutputQuantInfo[0];
outputScale = (outputScale == 0.f ? 0.f : 1.f / outputScale);
std::vector<int32_t> scales_(outputCount, 0);
std::vector<int32_t> bias_(outputCount, 0);
auto scalePtr = (float*)mScaleBias->host<uint8_t>();
auto biasPtr = (float*)(mScaleBias->host<uint8_t>() + mScaleBias->length(1));
mShiftBits = 15;
for (int i = 0; i < outputCount; ++i) {
int32_t scaleInt32 = static_cast<int32_t>(roundf(scalePtr[i] * inputScale * outputScale * (1 << mShiftBits)));
scales_[i] = scaleInt32;
int32_t biasInt32 = static_cast<int32_t>(roundf(biasPtr[i] * outputScale* (1 << mShiftBits)));
bias_[i] = biasInt32;
}
auto scalePtr_ = mScaleBias->host<uint8_t>();
auto biasPtr_ = scalePtr_ + mScaleBias->length(1);
::memcpy(scalePtr_, scales_.data(), outputCount * sizeof(int32_t));
::memcpy(biasPtr_, bias_.data(), outputCount * sizeof(int32_t));
mOutputQuantInfo[0] = outputScale;
return NO_ERROR;
}
ErrorCode CPUScaleInt8::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
auto core = static_cast<CPUBackend*>(backend())->functions();
auto gcore = static_cast<CPUBackend*>(backend())->int8Functions();
auto scalePtr = mScaleBias->host<uint8_t>();
auto biasPtr = mScaleBias->host<uint8_t>() + 1 * mScaleBias->length(1);
auto batch = input->buffer().dim[0].extent;
auto depthQuad = UP_DIV(input->channel(), core->pack);
int planeNumber = 1;
for (int i = 2; i < input->buffer().dimensions; ++i) {
planeNumber *= input->length(i);
}
auto depthStride = planeNumber * core->pack;
auto totalDepth = batch * depthQuad;
int numberThread = ((CPUBackend*)backend())->threadNumber();
MNN_CONCURRENCY_BEGIN(tId, numberThread) {
int8_t inputZeroPoint = (int8_t)mInputQuantInfo[1];
int8_t outputZeroPoint = (int8_t)mOutputQuantInfo[1];
for (int i = tId; i < totalDepth; i+=numberThread) {
auto depthIndex = i / batch;
const int8_t* inputPtr = input->host<int8_t>() + depthStride * i;
const int32_t* biasPtr_ = (const int32_t*)(biasPtr + core->pack * core->bytes * depthIndex);
const int32_t* scalePtr_ = (const int32_t*)(scalePtr + core->pack * core->bytes * depthIndex);
MNNScaleAndAddBiasInt8(output->host<int8_t>() + depthStride * i, inputPtr, biasPtr_, scalePtr_, mShiftBits, (ssize_t)mOutputQuantInfo[2], (ssize_t)mOutputQuantInfo[3], &inputZeroPoint, &outputZeroPoint, planeNumber, 1, core->pack);
}
}
MNN_CONCURRENCY_END();
return NO_ERROR;
}
} // namespace MNN