MNN/source/backend/arm82/Arm82Interp.cpp

297 lines
12 KiB
C++

//
// Arm82Interp.cpp
// MNN
//
// Created by MNN on 2020/04/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#if defined(__ANDROID__) || defined(__aarch64__)
#include "Arm82Interp.hpp"
#include <math.h>
#include "core/Concurrency.h"
#include "core/Macro.h"
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#endif
namespace MNN {
static void Arm82NearestUnit(FLOAT16* dst, const FLOAT16* src, const int* position, int width) {
for (int i = 0; i < width; ++i) {
#ifdef MNN_USE_NEON
float16x8_t nn_value = vld1q_f16(src + ARMV82_CHANNEL_UNIT * position[2 * i]);
vst1q_f16(dst + ARMV82_CHANNEL_UNIT * i, nn_value);
#else
for (int k = 0; k < ARMV82_CHANNEL_UNIT; ++k) {
int index = i * ARMV82_CHANNEL_UNIT + k;
dst[index] = src[ARMV82_CHANNEL_UNIT * position[2 * i] + k];
}
#endif
}
}
static void Arm82BilinearSampleCUnit(const FLOAT16* src, FLOAT16* dst, const int* position, const FLOAT16* factor,
int width) {
for (int i = 0; i < width; ++i) {
FLOAT16 f = factor[i];
#ifdef MNN_USE_NEON
float16x8_t vdf = vdupq_n_f16(f);
float16x8_t vsf = vdupq_n_f16(1.0f - f);
float16x8_t A = vld1q_f16(src + ARMV82_CHANNEL_UNIT * position[2 * i + 0]);
float16x8_t B = vld1q_f16(src + ARMV82_CHANNEL_UNIT * position[2 * i + 1]);
vst1q_f16(dst + ARMV82_CHANNEL_UNIT * i, A * vsf + B * vdf);
#else
for (int k = 0; k < ARMV82_CHANNEL_UNIT; ++k) {
FLOAT16 A = src[ARMV82_CHANNEL_UNIT * position[2 * i + 0] + k];
FLOAT16 B = src[ARMV82_CHANNEL_UNIT * position[2 * i + 1] + k];
dst[ARMV82_CHANNEL_UNIT * i + k] = A * (1 - f) + B * f;
}
#endif
}
}
static void Arm82BilinearLineCUnit(FLOAT16* dst, const FLOAT16* A, const FLOAT16* B, const FLOAT16* factor, int width) {
#ifdef MNN_USE_NEON
float16x8_t vdf = vdupq_n_f16(*factor);
float16x8_t vsf = vdupq_n_f16(1.0f) - vdf;
for (int i = 0; i < width; ++i) {
float16x8_t value_a = vld1q_f16(A + ARMV82_CHANNEL_UNIT * i);
float16x8_t value_b = vld1q_f16(B + ARMV82_CHANNEL_UNIT * i);
vst1q_f16(dst + ARMV82_CHANNEL_UNIT * i, value_a * vsf + value_b * vdf);
}
#else
FLOAT16 f = *factor;
for (int i = 0; i < width; ++i) {
for (int j = 0; j < ARMV82_CHANNEL_UNIT; ++j) {
int index = i * ARMV82_CHANNEL_UNIT + j;
dst[index] = A[index] * (1 - f) + B[index] * f;
}
}
#endif
}
static inline int CLAMP(int a, int min, int max) {
if (a < min) {
a = min;
} else if (a > max) {
a = max;
}
return a;
}
Arm82Interp::Arm82Interp(Backend* backend, float widthScale, float heightScale, int resizeType, float widthOffset, float heightOffset)
: Execution(backend),
mWidthScale(widthScale),
mHeightScale(heightScale),
mResizeType(resizeType),
mWidthOffset(widthOffset),
mHeightOffset(heightOffset) {
}
Arm82Interp::~Arm82Interp() {
}
ErrorCode Arm82Interp::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const auto input = inputs[0];
auto output = outputs[0];
const int iw = input->width();
const int ih = input->height();
const int ow = output->width();
const int oh = output->height();
const float xScaling = mWidthScale;
const float yScaling = mHeightScale;
mWidthPosition.buffer().dim[0].extent = 2 * ow;
mWidthPosition.buffer().dimensions = 1;
mWidthPosition.setType(DataType_DT_INT32);
backend()->onAcquireBuffer(&mWidthPosition, Backend::DYNAMIC_SEPERATE);
mWidthFactor.buffer().dim[0].extent = ow;
mWidthFactor.buffer().dimensions = 1;
mWidthFactor.setType(DataType_DT_INT16);
backend()->onAcquireBuffer(&mWidthFactor, Backend::DYNAMIC_SEPERATE);
auto _wPositionPtr = mWidthPosition.host<int>();
auto _wFactorPtr = mWidthFactor.host<FLOAT16>();
for (int x = 0; x < ow; ++x) {
float srcX = x * xScaling + mWidthOffset;
int x1 = floor(srcX);
FLOAT16 x2Factor = srcX - x1;
_wFactorPtr[x] = x2Factor;
_wPositionPtr[2 * x + 0] = CLAMP(x1, 0, iw - 1);
_wPositionPtr[2 * x + 1] = CLAMP(x1 + 1, 0, iw - 1);
}
mHeightPosition.buffer().dim[0].extent = 2 * oh;
mHeightPosition.buffer().dimensions = 1;
mHeightPosition.setType(DataType_DT_INT32);
backend()->onAcquireBuffer(&mHeightPosition, Backend::DYNAMIC_SEPERATE);
mHeightFactor.buffer().dim[0].extent = oh;
mHeightFactor.buffer().dimensions = 1;
mHeightFactor.setType(DataType_DT_INT16);
backend()->onAcquireBuffer(&mHeightFactor, Backend::DYNAMIC_SEPERATE);
auto _hPositionPtr = mHeightPosition.host<int>();
auto _hFactorPtr = mHeightFactor.host<FLOAT16>();
for (int y = 0; y < oh; ++y) {
float srcY = y * yScaling + mHeightOffset;
int y1 = floor(srcY);
FLOAT16 y2Factor = srcY - y1;
_hFactorPtr[y] = y2Factor;
_hPositionPtr[2 * y + 0] = CLAMP(y1, 0, ih - 1);
_hPositionPtr[2 * y + 1] = CLAMP(y1 + 1, 0, ih - 1);
}
mTheadNumbers = static_cast<Arm82Backend*>(backend())->numberThread();
mLineBuffer.buffer().dimensions = 1;
mLineBuffer.buffer().dim[0].extent = 2 * ARMV82_CHANNEL_UNIT * ow * mTheadNumbers;
mLineBuffer.setType(DataType_DT_INT16);
backend()->onAcquireBuffer(&mLineBuffer, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mLineBuffer, Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode Arm82Interp::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const auto input = inputs[0];
auto output = outputs[0];
const int batches = input->batch();
const int iw = input->width();
const int ih = input->height();
const int ow = output->width();
const int oh = output->height();
const int inputBatchStride = iw * ih * ARMV82_CHANNEL_UNIT;
const int outputBatchStride = ow * oh * ARMV82_CHANNEL_UNIT;
const int inputChannelStride = iw * ih;
const int outputChannelStride = ow * oh;
const int channelDivUnit = UP_DIV(input->channel(), ARMV82_CHANNEL_UNIT);
if (mResizeType == 1) {
const auto widthPositionPtr = mWidthPosition.host<int>();
const auto heightPositionPtr = mHeightPosition.host<int>();
for (int b = 0; b < batches; ++b) {
const auto curInputBatchPtr = input->host<FLOAT16>() + b * inputBatchStride;
auto curOutputBatchPtr = output->host<FLOAT16>() + b * outputBatchStride;
auto threadFucntion = [&](size_t tId, const FLOAT16* src, FLOAT16* dst) {
for (int n = (int)tId; n < channelDivUnit; n += mTheadNumbers) {
const auto curSrc = src + n * ARMV82_CHANNEL_UNIT * inputChannelStride;
auto curDst = dst + n * ARMV82_CHANNEL_UNIT * outputChannelStride;
for (int h = 0; h < oh; ++h) {
int yPosition = heightPositionPtr[2 * h];
Arm82NearestUnit(curDst + ow * h * ARMV82_CHANNEL_UNIT,
curSrc + yPosition * iw * ARMV82_CHANNEL_UNIT,
widthPositionPtr,
ow);
}
}
};
MNN_CONCURRENCY_BEGIN(tId, mTheadNumbers)
threadFucntion(tId, curInputBatchPtr, curOutputBatchPtr);
MNN_CONCURRENCY_END();
}
} else if (mResizeType == 2) {
const auto widthPositionPtr = mWidthPosition.host<int>();
const auto widthFactorPtr = mWidthFactor.host<FLOAT16>();
const auto heightPositionPtr = mHeightPosition.host<int>();
const auto heightFactorPtr = mHeightFactor.host<FLOAT16>();
auto lineBuffer = mLineBuffer.host<FLOAT16>();
for (int b = 0; b < batches; ++b) {
const auto curInputBatchPtr = input->host<FLOAT16>() + b * inputBatchStride;
auto curOutputBatchPtr = output->host<FLOAT16>() + b * outputBatchStride;
auto threadFucntion = [&](size_t tId, const FLOAT16* src, FLOAT16* dst) {
for (int n = (int)tId; n < channelDivUnit; n += mTheadNumbers) {
auto _lineBuffer = lineBuffer + 2 * ARMV82_CHANNEL_UNIT * ow * tId;
auto _line0 = _lineBuffer;
auto _line1 = _lineBuffer + ARMV82_CHANNEL_UNIT * ow;
int yUsed[2] = {0, 0};
int yCache[2] = {-1, -1};
FLOAT16* yCacheLine[2] = {_line0, _line1};
FLOAT16* const yCacheStorage[2] = {_line0, _line1};
const auto curSrc = src + n * ARMV82_CHANNEL_UNIT * inputChannelStride;
auto curDst = dst + n * ARMV82_CHANNEL_UNIT * outputChannelStride;
for (int h = 0; h < oh; ++h) {
int yPosition[2];
yPosition[0] = heightPositionPtr[2 * h + 0];
yPosition[1] = heightPositionPtr[2 * h + 1];
for (int j = 0; j < 2; ++j) {
yUsed[j] = 0;
}
for (int j = 0; j < 2; ++j) {
bool find = false;
for (int k = 0; k < 2; ++k) {
if (yPosition[j] == yCache[k]) {
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
find = true;
}
}
if (!find) {
const auto curLine = curSrc + yPosition[j] * iw * ARMV82_CHANNEL_UNIT;
for (int k = 0; k < 2; ++k) {
if (!yUsed[k]) {
yCache[k] = yPosition[j];
yUsed[k] = 1;
yCacheLine[j] = yCacheStorage[k];
Arm82BilinearSampleCUnit(curLine, yCacheLine[j], widthPositionPtr,
widthFactorPtr, ow);
break;
}
}
}
}
Arm82BilinearLineCUnit(curDst + ow * h * ARMV82_CHANNEL_UNIT, yCacheLine[0], yCacheLine[1],
heightFactorPtr + h, ow);
}
}
};
MNN_CONCURRENCY_BEGIN(tId, mTheadNumbers)
threadFucntion(tId, curInputBatchPtr, curOutputBatchPtr);
MNN_CONCURRENCY_END();
}
} else {
return NOT_SUPPORT;
}
return NO_ERROR;
}
class Arm82InterpCreator : public Arm82Backend::Arm82Creator {
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
auto param = op->main_as_Interp();
// nearest and bilinear are supported
// TODO, support other resize types
if(param->resizeType() != 2 && param->resizeType() != 1){
return nullptr;
}
return new Arm82Interp(backend, param->widthScale(), param->heightScale(), param->resizeType(),
param->widthOffset(), param->heightOffset());
}
};
REGISTER_ARM82_OP_CREATOR(OpType_Interp, Arm82InterpCreator);
} // namespace MNN
#endif