MNN/source/backend/opencl/execution/ConvWinograd.cpp

319 lines
12 KiB
C++

//
// ConvWinograd.cpp
// MNN
//
// Created by MNN on 2019/01/08.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "ConvWinograd.hpp"
#include <string.h>
#include "Backend.hpp"
#include "ConvolutionIntFactory.hpp"
#include "WingoradGenerater.hpp"
#include "core/OpenCLRunningUtils.hpp"
#define UNIT 2
#define INTERP 1
namespace MNN {
namespace OpenCL {
bool ConvWinograd::valid(const Convolution2DCommon* common, const Tensor* input, int limit) {
if (common->strideX() != 1 || common->strideY() != 1) {
return false;
}
if (common->dilateX() != 1 || common->dilateY() != 1) {
return false;
}
return (common->kernelX() == 3 && common->kernelY() == 3) || (common->kernelX() == 5 && common->kernelY() == 5);
}
ConvWinograd::ConvWinograd(const MNN::Convolution2D* op, Backend* backend) : Execution(backend) {
mOpenCLBackend = static_cast<OpenCLBackend*>(backend);
mCommon = op->common();
MNN_ASSERT((3 == mCommon->kernelY() && 3 == mCommon->kernelX()) ||
(5 == mCommon->kernelX() && 5 == mCommon->kernelY()));
MNN_ASSERT(1 == mCommon->strideX() && 1 == mCommon->strideY());
MNN_ASSERT(1 == mCommon->dilateX() && 1 == mCommon->dilateY());
auto runTime = mOpenCLBackend->getOpenCLRuntime();
int ky = mCommon->kernelY();
int kx = mCommon->kernelX();
std::set<std::string> basic;
/*Create Kernel*/
{
char format[20];
::memset(format, 0, sizeof(format));
sprintf(format, "%d_%d_%d", UNIT, kx, INTERP);
auto formatStr = std::string(format);
mSourceTransform =
runTime->buildKernel("winogradTransformSource" + formatStr, "winogradTransformSource", basic);
{
std::set<std::string> buildOptions = basic;
if (mCommon->relu()) {
buildOptions.emplace("-DRELU");
}
if (mCommon->relu6()) {
buildOptions.emplace("-DRELU6");
}
mDestTransform =
runTime->buildKernel("winogradTransformDest" + formatStr, "winogradTransformDest", buildOptions);
}
mMatMul = runTime->buildKernel("gemm", "gemm", basic);
}
int weightSize = 0;
const float* filterDataPtr = nullptr;
std::shared_ptr<MNN::ConvolutionIntFactory::Int8Common> quanCommon;
if (nullptr != op->quanParameter()) {
quanCommon = ConvolutionIntFactory::load(op->quanParameter(), true);
if (nullptr == quanCommon) {
MNN_ERROR("Memory not Enough, can't extract IDST Convolution \n");
}
if (quanCommon->weightFloat.get() == nullptr) {
MNN_PRINT("quanCommon->weightFloat.get() == nullptr \n");
}
// Back to float
filterDataPtr = quanCommon->weightFloat.get();
weightSize = quanCommon->weightFloat.size();
}
if (nullptr == filterDataPtr) {
weightSize = op->weight()->size();
filterDataPtr = op->weight()->data();
}
int co = mCommon->outputCount();
int ci = weightSize / co / mCommon->kernelX() / mCommon->kernelY();
auto coC4 = UP_DIV(co, 4);
auto ciC4 = UP_DIV(ci, 4);
auto queue = runTime->commandQueue();
auto imageChannelType = CL_HALF_FLOAT;
if (mOpenCLBackend->getPrecision() == BackendConfig::Precision_High) {
imageChannelType = CL_FLOAT;
}
// Create Image
{
mBias.reset(new cl::Image2D(runTime->context(), CL_MEM_READ_WRITE, cl::ImageFormat(CL_RGBA, imageChannelType),
UP_DIV(co, 4), 1, 0, nullptr, nullptr));
auto biasSize = UP_DIV(co, 4) * 4 * sizeof(float);
std::shared_ptr<cl::Buffer> biasBuffer(
new cl::Buffer(runTime->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, biasSize));
auto biasC = queue.enqueueMapBuffer(*biasBuffer, CL_TRUE, CL_MAP_WRITE, 0, biasSize);
if(biasC != nullptr){
::memset(biasC, 0, biasSize);
::memcpy(biasC, op->bias()->data(), co * sizeof(float));
}else{
MNN_ERROR("Map error biasC == nullptr \n");
}
queue.enqueueUnmapMemObject(*biasBuffer, biasC);
copyBufferToImage(runTime, *biasBuffer, *mBias, coC4, 1);
std::shared_ptr<Tensor> sourceWeight(
Tensor::create<float>(std::vector<int>{co, ci, ky, kx}, (void*)(filterDataPtr), Tensor::CAFFE));
int unit = UNIT;
int kernelSize = kx;
Math::WinogradGenerater generator(unit, kernelSize, INTERP);
int alpha = unit + kernelSize - 1;
auto weightDest = generator.allocTransformWeight(sourceWeight.get());
generator.transformWeight(weightDest.get(), sourceWeight.get());
auto weightDestSize = weightDest->size();
cl::Buffer weightBuffer(runTime->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, weightDest->size());
{
auto weightPtr = queue.enqueueMapBuffer(weightBuffer, CL_TRUE, CL_MAP_WRITE, 0, weightDestSize);
if(weightPtr != nullptr){
::memcpy(weightPtr, weightDest->host<float>(), weightDestSize);
} else{
MNN_ERROR("Map error weightPtr == nullptr \n");
}
queue.enqueueUnmapMemObject(weightBuffer, weightPtr);
}
mWeight.reset(new cl::Image2D(runTime->context(), CL_MEM_READ_WRITE, cl::ImageFormat(CL_RGBA, imageChannelType),
ciC4 * 4, coC4 * alpha * alpha, 0, nullptr, nullptr));
copyBufferToImage(runTime, weightBuffer, *mWeight, ciC4 * 4, coC4 * alpha * alpha);
}
}
ErrorCode ConvWinograd::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
mKernelX = mCommon->kernelX();
mKernelY = mCommon->kernelY();
mPadX = mCommon->padX();
mPadY = mCommon->padY();
mStrideX = mCommon->strideX();
mStrideY = mCommon->strideY();
mPadMode = mCommon->padMode();
int alpha = mCommon->kernelX() + UNIT - 1;
auto wUnit = UP_DIV(output->width(), UNIT);
auto hUnit = UP_DIV(output->height(), UNIT);
int padX = mPadX;
int padY = mPadY;
if (mPadMode == PadMode_SAME) {
int kernelWidthSize = (mKernelX - 1) * mCommon->dilateX() + 1;
int kernelHeightSize = (mKernelY - 1) * mCommon->dilateY() + 1;
int padNeededWidth = (output->width() - 1) * mStrideX + kernelWidthSize - input->width();
int padNeededHeight = (output->height() - 1) * mStrideY + kernelHeightSize - input->height();
padX = padNeededWidth / 2;
padY = padNeededHeight / 2;
}
auto runTime = mOpenCLBackend->getOpenCLRuntime();
int maxWidth = runTime->getMaxImage2DSize()[0];
int maxHeight = runTime->getMaxImage2DSize()[1];
int sourceWidth = UP_DIV(input->channel(), 4) * 4;
int sourceHeight = alpha * alpha * UP_DIV(wUnit * hUnit, 4);
int sliceNumber = 1;
const int maxSlice = 100;
if (maxWidth < sourceWidth || maxHeight < sourceHeight) {
for (int i = 2; i < maxSlice; ++i) {
int realWidth = (size_t)UP_DIV(input->channel(), 4) * 4;
int readHeight = (size_t)alpha * alpha * UP_DIV(UP_DIV(wUnit, i) * UP_DIV(hUnit, i), 4);
if (realWidth < maxWidth && readHeight < maxHeight) {
sliceNumber = i;
break;
}
}
}
mSliceNumber = sliceNumber;
int wPiece = UP_DIV(wUnit, sliceNumber);
int hPiece = UP_DIV(hUnit, sliceNumber);
auto bn = backend();
mSource.reset(Tensor::createDevice<float>(
std::vector<int>{alpha * alpha, input->channel(), UP_DIV(wPiece * hPiece, 4), 4}, Tensor::CAFFE_C4));
mDest.reset(Tensor::createDevice<float>(
std::vector<int>{4, wPiece * hPiece, UP_DIV(output->channel(), 4), alpha * alpha}, Tensor::CAFFE_C4));
bn->onAcquireBuffer(mSource.get(), Backend::DYNAMIC);
bn->onAcquireBuffer(mDest.get(), Backend::DYNAMIC);
bn->onReleaseBuffer(mSource.get(), Backend::DYNAMIC);
bn->onReleaseBuffer(mDest.get(), Backend::DYNAMIC);
auto icC4 = UP_DIV(input->channel(), 4);
auto ocC4 = UP_DIV(output->channel(), 4);
mSourceTransform.setArg(0, openCLImage(input));
mSourceTransform.setArg(1, openCLImage(mSource.get()));
mSourceTransform.setArg(4, padX);
mSourceTransform.setArg(5, padY);
mSourceTransform.setArg(6, input->width());
mSourceTransform.setArg(7, input->height());
mSourceTransform.setArg(8, icC4);
mMatMul.setArg(0, openCLImage(mSource.get()));
mMatMul.setArg(1, *mWeight);
mMatMul.setArg(4, ocC4);
mMatMul.setArg(5, icC4);
mDestTransform.setArg(1, *mBias);
mDestTransform.setArg(2, openCLImage(output));
mDestTransform.setArg(5, output->width());
mDestTransform.setArg(6, output->height());
mDestTransform.setArg(7, ocC4);
return NO_ERROR;
}
ErrorCode ConvWinograd::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
int alpha = mKernelX + UNIT - 1;
auto wUnit = UP_DIV(output->width(), UNIT);
auto hUnit = UP_DIV(output->height(), UNIT);
auto icC4 = UP_DIV(input->channel(), 4);
auto ocC4 = UP_DIV(output->channel(), 4);
auto runTime = mOpenCLBackend->getOpenCLRuntime();
int wPiece = UP_DIV(wUnit, mSliceNumber);
int hPiece = UP_DIV(hUnit, mSliceNumber);
for (int b = 0; b < input->batch(); ++b) {
std::vector<int> offsetData;
offsetData.push_back(0);
offsetData.push_back(0);
for (int y = 0; y < mSliceNumber; ++y) {
int hCount = hPiece;
if (y == mSliceNumber - 1) {
hCount = hUnit - (mSliceNumber - 1) * hPiece;
}
offsetData[1] = y * hPiece;
for (int x = 0; x < mSliceNumber; ++x) {
int wCount = wPiece;
if (x == mSliceNumber - 1) {
wCount = wUnit - (mSliceNumber - 1) * wPiece;
}
offsetData[0] = x * wPiece;
auto dest = mDest.get();
mSourceTransform.setArg(2, wCount);
mSourceTransform.setArg(3, hCount);
mSourceTransform.setArg(9, offsetData[0]);
mSourceTransform.setArg(10, offsetData[1]);
mSourceTransform.setArg(11, b);
auto gemmWidth = UP_DIV(wCount * hCount, 4);
mMatMul.setArg(2, openCLImage(dest));
mMatMul.setArg(3, gemmWidth);
mDestTransform.setArg(0, openCLImage(dest));
mDestTransform.setArg(3, wCount);
mDestTransform.setArg(4, hCount);
mDestTransform.setArg(8, offsetData[0]);
mDestTransform.setArg(9, offsetData[1]);
mDestTransform.setArg(10, b);
/*Source Transform*/
{
int align = 8;
auto error = runTime->commandQueue().enqueueNDRangeKernel(
mSourceTransform, cl::NullRange,
cl::NDRange(UP_DIV(wCount, align) * align, UP_DIV(hCount, align) * align, icC4),
cl::NDRange(align, align, 1));
MNN_ASSERT(CL_SUCCESS == error);
}
/*MatMul*/
{
int align = 8;
auto gemmWidth = UP_DIV(wCount * hCount, 4);
auto gemmHeight = ocC4;
auto error = runTime->commandQueue().enqueueNDRangeKernel(
mMatMul, cl::NullRange,
cl::NDRange(UP_DIV(gemmWidth, align) * align, UP_DIV(gemmHeight, align) * align, alpha * alpha),
cl::NDRange(align, align, 1));
MNN_ASSERT(CL_SUCCESS == error);
}
// Dest Transform
{
int align = 8;
auto error = runTime->commandQueue().enqueueNDRangeKernel(
mDestTransform, cl::NullRange,
cl::NDRange(UP_DIV(wCount, align) * align, UP_DIV(hCount, align) * align, ocC4),
cl::NDRange(align, align, 1));
MNN_ASSERT(CL_SUCCESS == error);
}
}
}
}
return NO_ERROR;
}
} // namespace OpenCL
} // namespace MNN