mirror of https://github.com/alibaba/MNN.git
199 lines
8.2 KiB
C++
199 lines
8.2 KiB
C++
//
|
|
// DepthwiseConvExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "DepthwiseConvExecution.hpp"
|
|
#include <Macro.h>
|
|
#include <string.h>
|
|
#include "TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
DepthwiseConvExecution::DepthwiseConvExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
|
|
: ConvCommonExecution(op->main_as_Convolution2D(), backend) {
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
mCon2dParams = op->main_as_Convolution2D();
|
|
mConv2dCommonParams = mCon2dParams->common();
|
|
mStrides = {mConv2dCommonParams->strideY(), mConv2dCommonParams->strideX()};
|
|
mDilations = {mConv2dCommonParams->dilateY(), mConv2dCommonParams->dilateX()};
|
|
|
|
mPaddings[0] = mConv2dCommonParams->padY() * 2;
|
|
mPaddings[1] = mConv2dCommonParams->padX() * 2;
|
|
PadMode padMode = mConv2dCommonParams->padMode();
|
|
if (padMode == PadMode_VALID) {
|
|
mPaddings[0] = 0;
|
|
mPaddings[1] = 0;
|
|
}
|
|
|
|
int kernelWidth = mConv2dCommonParams->kernelX();
|
|
int kernelHeight = mConv2dCommonParams->kernelY();
|
|
int outputChannel = mConv2dCommonParams->outputCount();
|
|
|
|
std::vector<int> filterShape{1, outputChannel, kernelHeight, kernelWidth};
|
|
std::vector<int> filterImageShape{(int)kernelHeight * kernelWidth, (int)UP_DIV(outputChannel, 4)};
|
|
const float *filterDataPtr = mCon2dParams->weight()->data();
|
|
mFilter.reset(Tensor::createDevice<float>({1, filterImageShape[1], 1, 4 * filterImageShape[0]}));
|
|
std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>(filterShape));
|
|
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
|
|
filterBuffer->size());
|
|
filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
|
|
auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE,
|
|
0, filterBuffer->size());
|
|
if(ptrCL != nullptr){
|
|
::memcpy(ptrCL, filterDataPtr, filterBuffer->size());
|
|
}else{
|
|
MNN_ERROR("Map error ptrCL == nullptr \n");
|
|
}
|
|
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
|
|
|
|
mOpenCLBackend->onAcquireBuffer(mFilter.get(), Backend::STATIC);
|
|
|
|
MNN::OpenCL::ImageBufferConvertor imageBufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
|
|
imageBufferConvertor.convertBufferToImage(filterBuffer.get(), MNN::OpenCL::DW_CONV2D_FILTER, mFilter.get());
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
std::set<std::string> buildOptions;
|
|
std::string kernelName = "depthwise_conv2d";
|
|
if (mConv2dCommonParams->strideX() == 1 && mConv2dCommonParams->strideY() == 1 &&
|
|
mConv2dCommonParams->dilateX() == 1 && mConv2dCommonParams->dilateY() == 1) {
|
|
kernelName = "depthwise_conv2d_s1";
|
|
}
|
|
|
|
if (mConv2dCommonParams->relu() == true) {
|
|
buildOptions.emplace("-DRELU");
|
|
} else if (mConv2dCommonParams->relu6() == true) {
|
|
buildOptions.emplace("-DRELU6");
|
|
}
|
|
|
|
mKernel = runtime->buildKernel("depthwise_conv2d", kernelName, buildOptions);
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
|
|
}
|
|
|
|
DepthwiseConvExecution::~DepthwiseConvExecution() {
|
|
mOpenCLBackend->onReleaseBuffer(mFilter.get(), Backend::STATIC);
|
|
}
|
|
|
|
ErrorCode DepthwiseConvExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
std::vector<int> outputShape = tensorShapeFormat(output);
|
|
|
|
mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), 4) * UP_DIV(outputShape.at(2), 4)),
|
|
static_cast<uint32_t>(outputShape.at(0) * outputShape.at(1))};
|
|
mLocalWorkSize = depthwiseConvLocalWS(mGlobalWorkSize, mMaxWorkGroupSize);
|
|
|
|
if (mConv2dCommonParams->padMode() == PadMode_SAME) {
|
|
int kernelHeightSize = (mConv2dCommonParams->kernelY() - 1) * mConv2dCommonParams->dilateY() + 1;
|
|
int padNeededHeight =
|
|
(output->height() - 1) * mConv2dCommonParams->strideY() + kernelHeightSize - input->height();
|
|
int kernelWidthSize = (mConv2dCommonParams->kernelX() - 1) * mConv2dCommonParams->dilateX() + 1;
|
|
int padNeededWidth =
|
|
(output->width() - 1) * mConv2dCommonParams->strideX() + kernelWidthSize - input->width();
|
|
|
|
mPaddings[0] = padNeededHeight;
|
|
mPaddings[1] = padNeededWidth;
|
|
}
|
|
|
|
const int outputHeight = outputShape.at(1);
|
|
const int outputWidth = outputShape.at(2);
|
|
|
|
const int inputHeight = inputShape.at(1);
|
|
const int inputWidth = inputShape.at(2);
|
|
const int inputChannels = inputShape.at(3);
|
|
|
|
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
|
|
const int filterHeight = mCon2dParams->common()->kernelY();
|
|
const int filterWidth = mCon2dParams->common()->kernelX();
|
|
uint32_t idx = 0;
|
|
auto kernel = &mKernel;
|
|
|
|
int inputImageShape[2] = {inputHeight, inputWidth};
|
|
int outputImageShape[2] = {outputHeight, outputWidth};
|
|
int strideShape[2] = {mStrides[0], mStrides[1]};
|
|
int paddingShape[2] = {mPaddings[0] / 2, mPaddings[1] / 2};
|
|
int kernelShape[2] = {filterHeight, filterWidth};
|
|
int dilationShape[2] = {mDilations[0], mDilations[1]};
|
|
|
|
kernel->setArg(idx++, mGlobalWorkSize[0]);
|
|
kernel->setArg(idx++, mGlobalWorkSize[1]);
|
|
kernel->setArg(idx++, openCLImage(input));
|
|
kernel->setArg(idx++, openCLImage(mFilter.get()));
|
|
kernel->setArg(idx++, openCLImage(mBias.get()));
|
|
kernel->setArg(idx++, openCLImage(output));
|
|
kernel->setArg(idx++, sizeof(inputImageShape), inputImageShape);
|
|
kernel->setArg(idx++, static_cast<int>(inputChannelBlocks));
|
|
kernel->setArg(idx++, sizeof(outputImageShape), outputImageShape);
|
|
kernel->setArg(idx++, sizeof(kernelShape), kernelShape);
|
|
kernel->setArg(idx++, sizeof(paddingShape), paddingShape);
|
|
if (mStrides[0] != 1 || mStrides[1] != 1 || mDilations[0] != 1 || mDilations[1] != 1) {
|
|
kernel->setArg(idx++, sizeof(dilationShape), dilationShape);
|
|
kernel->setArg(idx++, sizeof(strideShape), strideShape);
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
std::vector<uint32_t> DepthwiseConvExecution::depthwiseConvLocalWS(const std::vector<uint32_t> &gws,
|
|
const uint32_t maxWorkGroupSize) {
|
|
uint32_t deviceComputeUnits = mOpenCLBackend->getOpenCLRuntime()->deviceComputeUnits();
|
|
std::vector<uint32_t> lws(4, 0);
|
|
|
|
int coreNum = deviceComputeUnits * 4;
|
|
int remain = gws[0] % coreNum;
|
|
int groupSize = gws[0] / coreNum;
|
|
if (remain == 0) {
|
|
lws[0] = groupSize;
|
|
} else {
|
|
while (groupSize) {
|
|
int remain = gws[0] % groupSize;
|
|
if (remain == 0 && groupSize <= maxWorkGroupSize) {
|
|
lws[0] = groupSize;
|
|
break;
|
|
}
|
|
groupSize--;
|
|
}
|
|
}
|
|
lws[0] = std::max<uint32_t>(std::min<uint32_t>(maxWorkGroupSize, lws[0]), 1);
|
|
|
|
remain = gws[1] % coreNum;
|
|
groupSize = gws[1] / coreNum;
|
|
if (remain == 0) {
|
|
lws[1] = groupSize;
|
|
} else {
|
|
while (groupSize) {
|
|
int remain = gws[1] % groupSize;
|
|
if (remain == 0) {
|
|
lws[1] = groupSize;
|
|
break;
|
|
}
|
|
groupSize--;
|
|
}
|
|
}
|
|
lws[1] = std::max<uint32_t>(std::min<uint32_t>(maxWorkGroupSize / lws[0], lws[1]), 1);
|
|
|
|
return lws;
|
|
}
|
|
|
|
ErrorCode DepthwiseConvExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start DepthwiseConvExecution onExecute !\n");
|
|
#endif
|
|
|
|
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end DepthwiseConvExecution onExecute !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
OpenCLCreatorRegister<TypedCreator<DepthwiseConvExecution>> __DepthwiseConv_op(OpType_ConvolutionDepthwise);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|