MNN/source/backend/opencl/execution/LrnExecution.cpp

110 lines
3.8 KiB
C++

//
// LrnExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "LrnExecution.hpp"
#include <Macro.h>
#include "TensorUtils.hpp"
namespace MNN {
namespace OpenCL {
LrnExecution::LrnExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: Execution(backend) {
#ifdef LOG_VERBOSE
MNN_PRINT("start LrnExecution init !\n");
#endif
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
auto lrn = op->main_as_LRN();
mRegionType = lrn->regionType();
mLocalSize = lrn->localSize();
mAlpha = lrn->alpha() / (float)mLocalSize;
mBeta = lrn->beta();
auto runtime = mOpenCLBackend->getOpenCLRuntime();
std::set<std::string> buildOptions;
std::string kernelName = "lrn_buffer";
mKernel = runtime->buildKernel("lrn", kernelName, buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
#ifdef LOG_VERBOSE
MNN_PRINT("end LrnExecution init !\n");
#endif
}
ErrorCode LrnExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto bufferPool = mOpenCLBackend->getBufferPool();
mInputTemp.reset(Tensor::createDevice<float>(tensorShapeFormat(inputs[0])));
mOutputTemp.reset(Tensor::createDevice<float>(tensorShapeFormat(outputs[0])));
auto inputBuffer = bufferPool->alloc(mInputTemp->size());
auto outputBuffer = bufferPool->alloc(mOutputTemp->size());
mInputTemp->buffer().device = (uint64_t)inputBuffer;
mOutputTemp->buffer().device = (uint64_t)outputBuffer;
bufferPool->recycle(inputBuffer);
bufferPool->recycle(outputBuffer);
return NO_ERROR;
}
ErrorCode LrnExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start LrnExecution onExecute !\n");
#endif
Tensor *input = inputs[0];
Tensor *output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
int oN = outputShape.at(0);
int oH = outputShape.at(1);
int oW = outputShape.at(2);
int oC = outputShape.at(3);
convertImageToNCHWBuffer(input, mInputTemp.get(), mImageToBufferKernel, mOpenCLBackend->getOpenCLRuntime());
{
std::vector<uint32_t> gws = {static_cast<uint32_t>(oW), static_cast<uint32_t>(oH), static_cast<uint32_t>(oC)};
const std::vector<uint32_t> lws = {16, 16, 1};
int32_t shape[4] = {oW, oH, oC, oN};
{
uint32_t idx = 0;
mKernel.setArg(idx++, openCLBuffer(mInputTemp.get()));
mKernel.setArg(idx++, openCLBuffer(mOutputTemp.get()));
mKernel.setArg(idx++, shape);
mKernel.setArg(idx++, mLocalSize);
mKernel.setArg(idx++, mAlpha);
mKernel.setArg(idx++, mBeta);
}
run3DKernelDefault(mKernel, gws, lws, mOpenCLBackend->getOpenCLRuntime());
}
convertNCHWBufferToImage(mOutputTemp.get(), output, mBufferToImageKernel, mOpenCLBackend->getOpenCLRuntime());
#ifdef LOG_VERBOSE
MNN_PRINT("end LrnExecution onExecute !\n");
#endif
return NO_ERROR;
}
class LRNCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
auto lrn = op->main_as_LRN();
if (lrn->regionType() != 0) {
return nullptr;
}
return new LrnExecution(inputs, op, backend);
}
};
OpenCLCreatorRegister<LRNCreator> __lrn_op(OpType_LRN);
} // namespace OpenCL
} // namespace MNN