MNN/source/backend/opencl/execution/SoftmaxExecution.cpp

177 lines
6.0 KiB
C++

//
// SoftmaxExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "execution/SoftmaxExecution.hpp"
#include <Macro.h>
namespace MNN {
namespace OpenCL {
SoftmaxExecution::SoftmaxExecution(const std::vector<Tensor *> &inputs, int axis, Backend *backend)
: Execution(backend) {
mAxis = axis;
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
buildSoftmaxKernel();
}
std::vector<uint32_t> SoftmaxExecution::softmaxLocalWS(const std::vector<uint32_t> &gws,
const uint32_t maxWorkGroupSize) {
std::vector<uint32_t> lws(4, 0);
GpuType gpuType = mOpenCLBackend->getOpenCLRuntime()->getGpuType();
uint32_t deviceComputeUnits = mOpenCLBackend->getOpenCLRuntime()->deviceComputeUnits();
if (gpuType == GpuType::ADRENO) {
int coreNum = deviceComputeUnits;
int remain = gws[0] % coreNum;
int groupSize = gws[0] / coreNum;
if (remain == 0) {
lws[0] = groupSize;
} else {
while (groupSize) {
int remain = gws[0] % groupSize;
if (remain == 0 && groupSize <= maxWorkGroupSize) {
lws[0] = groupSize;
break;
}
groupSize--;
}
}
lws[0] = std::max<uint32_t>(std::min<uint32_t>(maxWorkGroupSize, lws[0]), 1);
remain = gws[1] % coreNum;
groupSize = gws[1] / coreNum;
if (remain == 0) {
lws[1] = groupSize;
} else {
while (groupSize) {
int remain = gws[1] % groupSize;
if (remain == 0) {
lws[1] = groupSize;
break;
}
groupSize--;
}
}
lws[1] = std::max<uint32_t>(std::min<uint32_t>(maxWorkGroupSize / lws[0], lws[1]), 1);
remain = gws[2] % coreNum;
groupSize = gws[2] / coreNum;
if (remain == 0) {
lws[2] = groupSize;
} else {
while (groupSize) {
int remain = gws[2] % groupSize;
if (remain == 0) {
lws[2] = groupSize;
break;
}
groupSize--;
}
}
lws[2] = std::max<uint32_t>(std::min<uint32_t>(maxWorkGroupSize / (lws[0] * lws[1]), lws[2]), 1);
} else {
lws[0] = deviceComputeUnits * 2;
lws[1] = 4;
lws[2] = 1;
}
return lws;
}
bool SoftmaxExecution::buildSoftmaxKernel() {
auto runtime = mOpenCLBackend->getOpenCLRuntime();
if (mKernel.get() == nullptr) {
std::set<std::string> buildOptions;
std::string kernelName;
if (mAxis == 1) {
mKernel = runtime->buildKernel("softmax", "softmax_channel", buildOptions);
} else {
MNN_ASSERT(2 == mAxis);
mKernel = runtime->buildKernel("softmax_common", "softmax_height", buildOptions);
}
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
return true;
}
ErrorCode SoftmaxExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
Tensor *input = inputs[0];
Tensor *output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int outputBatch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannels = outputShape.at(3);
const int channelBlocks = UP_DIV(outputChannels, 4);
const int remainChannels = channelBlocks * 4 - outputChannels;
if (1 == mAxis) {
mGlobalWorkSize = {static_cast<uint32_t>(channelBlocks), static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight * outputBatch)};
uint32_t idx = 0;
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, mGlobalWorkSize[2]);
mKernel.setArg(idx++, openCLImage(input));
mKernel.setArg(idx++, openCLImage(output));
mKernel.setArg(idx++, static_cast<int>(outputChannels));
mKernel.setArg(idx++, remainChannels);
mLocalWorkSize = softmaxLocalWS(mGlobalWorkSize, mMaxWorkGroupSize);
} else {
MNN_ASSERT(2 == mAxis);
//FUNC_PRINT(mMaxWorkGroupSize);
if (mMaxWorkGroupSize > 256) {
mLocalWorkSize = {16, 16, 1};
} else {
mLocalWorkSize = {8, 8, 1};
}
mGlobalWorkSize = {(uint32_t)channelBlocks*outputWidth, (uint32_t)outputBatch, 1};
int shape[] = {outputBatch, channelBlocks, outputHeight, outputWidth};
mKernel.setArg(0, openCLImage(input));
mKernel.setArg(1, openCLImage(output));
mKernel.setArg(2, shape);
}
return NO_ERROR;
}
ErrorCode SoftmaxExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start SoftmaxExecution onExecute !\n");
#endif
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
#ifdef LOG_VERBOSE
MNN_PRINT("end SoftmaxExecution onExecute !\n");
#endif
return NO_ERROR;
}
class SoftmaxCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
auto axis = op->main_as_Axis()->axis();
if (-1 == axis) {
axis = inputs[0]->dimensions() - 1;
}
if (1 == axis || 2 == axis) {
return new SoftmaxExecution(inputs, axis, backend);
}
return nullptr;
}
};
OpenCLCreatorRegister<SoftmaxCreator> __Softmax_op(OpType_Softmax);
} // namespace OpenCL
} // namespace MNN