MNN/source/backend/opencl/execution/UnaryExecution.cpp

103 lines
3.5 KiB
C++

//
// UnaryExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "execution/UnaryExecution.hpp"
#include <Macro.h>
#include "TensorUtils.hpp"
#include "core/OpenCLBackend.hpp"
namespace MNN {
namespace OpenCL {
UnaryExecution::UnaryExecution(const std::string& compute, Backend* backend) : Execution(backend) {
auto openCLBackend = static_cast<OpenCLBackend*>(backend);
std::set<std::string> buildOptions;
buildOptions.emplace(" -DOPERATOR=" + compute);
// FUNC_PRINT_ALL(buildOptions.begin()->c_str(), s);
auto runtime = openCLBackend->getOpenCLRuntime();
mKernel = runtime->buildKernel("unary", "unary", buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
mAreadySetArg = false;
}
ErrorCode UnaryExecution::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start UnaryExecution onExecute...");
#endif
Tensor* input = inputs[0];
Tensor* output = outputs[0];
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
if (!mAreadySetArg) {
int batch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int channels = outputShape.at(3);
int channelBlocks = (channels + 3) / 4;
mGlobalWorkSize = {
static_cast<uint32_t>(channelBlocks),
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(batch * outputHeight),
};
uint32_t idx = 0;
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, mGlobalWorkSize[2]);
mKernel.setArg(idx++, openCLImage(input));
mKernel.setArg(idx++, openCLImage(output));
mAreadySetArg = true;
}
const std::vector<uint32_t> lws =
localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, openCLBackend->getOpenCLRuntime());
run3DKernelDefault(mKernel, mGlobalWorkSize, lws, openCLBackend->getOpenCLRuntime());
#ifdef LOG_VERBOSE
MNN_PRINT("end UnaryExecution onExecute...");
#endif
return NO_ERROR;
}
class UnaryCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
if (op->type() == OpType_UnaryOp) {
switch (op->main_as_UnaryOp()->opType()) {
case UnaryOpOperation_RSQRT:
return new UnaryExecution("rsqrt(in)", backend);
case UnaryOpOperation_ABS:
return new UnaryExecution("fabs(in)", backend);
default:
break;
}
return nullptr;
}
if (op->type() == OpType_Sigmoid) {
return new UnaryExecution("native_recip((float4)1+native_exp(-in))", backend);
}
if (op->type() == OpType_TanH) {
return new UnaryExecution("tanh(in)", backend);
}
return nullptr;
}
};
OpenCLCreatorRegister<UnaryCreator> __UnaryExecution(OpType_UnaryOp);
OpenCLCreatorRegister<UnaryCreator> __SigmoidExecution(OpType_Sigmoid);
OpenCLCreatorRegister<UnaryCreator> __TanhExecution(OpType_TanH);
} // namespace OpenCL
} // namespace MNN