MNN/source/backend/cpu/compute/DenseConvolutionTiledExecut...

744 lines
35 KiB
C++

//
// DenseConvolutionTiledExecutor.cpp
// MNN
//
// Created by MNN on 2018/07/16.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include "DenseConvolutionTiledExecutor.hpp"
#include <MNN/AutoTime.hpp>
#include "backend/cpu/CPUBackend.hpp"
#include "CommonOptFunction.h"
#include "core/Concurrency.h"
#include "ConvOpt.h"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "math/Vec.hpp"
#include "core/BufferAllocator.hpp"
#include "core/MemoryFormater.h"
#define PARAMETERSIZE 7
using Vec4 = MNN::Math::Vec<float, 4>;
namespace MNN {
void DenseConvolutionTiledExecutor::initWeight(float *dest, const float *source, float* cache, int depth, int outputCount, int kernelSize, const CoreFunctions* function) {
ConvolutionTiledExecutor::initWeight(source, cache, depth, outputCount, kernelSize, function);
function->MNNPackForMatMul_B(dest, cache, outputCount, kernelSize, depth, true);
}
bool DenseConvolutionTiledExecutor::initQuantizeResource(std::shared_ptr<ConvolutionCommon::Int8Common> int8Info, std::shared_ptr<CPUConvolution::Resource> resource, int hU, int hP, int lU, int lP, int outputCount, int srcChannel, int kernelSize, int bytes) {
int weightLength = hU * lU * hP * lP;
resource->mDequantize.bits = 8;
resource->lU = lU;
resource->hU = hU;
resource->lP = lP;
resource->hP = hP;
MNN_ASSERT(lP == 1);
// Save scale bias
int dequantCnt = int8Info->alpha.size();
int scaleSize = dequantCnt; // real size
if (int8Info->asymmetric) {
scaleSize = dequantCnt / 2;
}
int blockNum = scaleSize / outputCount;
scaleSize = blockNum * hU * hP; // pack size
resource->mDequantize.mScaleBias.reset(MNN::Tensor::createDevice<uint8_t>({scaleSize * 2 * bytes}));
auto res = resource->backend->onAcquireBuffer(resource->mDequantize.mScaleBias.get(), Backend::STATIC);
if (!res) {
return false;
}
int originOffset = 0;
auto srcWInt8 = int8Info->weight.get();
std::vector<int8_t> blob;
if (int8Info->canUseInt4) {
// Revert int4 to int8
auto size = int8Info->weight.size();
blob.resize(int8Info->weight.size() * 2);
auto idxBuf = (uint8_t*)srcWInt8;
for (int i=0; i<size; ++i) {
int val = idxBuf[i];
int x1 = val / 16;
int x2 = val % 16;
blob[2 * i] = x1 - 8;
blob[2 * i + 1] = x2 - 8;
}
srcWInt8 = blob.data();
}
{
resource->mWeight.reset(Tensor::createDevice<int8_t>(std::vector<int>{hU, lU * lP, hP}));
auto res = resource->backend->onAcquireBuffer(resource->mWeight.get(), Backend::STATIC);
if (!res) {
return false;
}
// Reorder weight for int8
auto dstWInt8 = resource->mWeight->host<int8_t>();
::memset(dstWInt8, 0, resource->mWeight->usize());
for (int y=0; y<outputCount; ++y) {
int yo = y / hP;
int yi = y % hP;
auto srcY = srcWInt8 + y * srcChannel * kernelSize;
auto dstY = dstWInt8 + yo * lP * hP * lU + yi;
for (int iz=0; iz<srcChannel; ++iz) {
for (int k=0; k<kernelSize; ++k) {
int sx = iz * kernelSize + k;
int dx = iz + k * srcChannel;
dstY[dx * hP] = srcY[sx];
}
}
}
}
auto alphaPtr = resource->mDequantize.mScaleBias->host<float>();
auto biasPtr = reinterpret_cast<float*>(reinterpret_cast<uint8_t*>(alphaPtr) + scaleSize * bytes);
::memset(alphaPtr, 0, 2 * scaleSize * bytes);
int h = int8Info->alpha.size();
if (bytes == 2) {
auto core = static_cast<CPUBackend*>(resource->backend)->functions();
std::vector<float> tmpAlpha(scaleSize * 2, 0.0f);
if (int8Info->asymmetric) {
for (int i = 0; i < blockNum; ++i) {
auto dstAlpha = tmpAlpha.data() + i * hU * hP;
auto srcAlpha = int8Info->alpha.get();
for (int j = 0; j < outputCount; ++j) {
int scaleIndex = j * blockNum + i;
dstAlpha[j] = srcAlpha[2 * scaleIndex + 1];
dstAlpha[j + scaleSize] = srcAlpha[2 * scaleIndex] + (float)originOffset * dstAlpha[j];
}
}
} else {
for (int i = 0; i < blockNum; ++i) {
auto dstAlpha = tmpAlpha.data() + i * hU * hP;
auto srcAlpha = int8Info->alpha.get();
for (int j = 0; j < outputCount; ++j) {
int scaleIndex = j * blockNum + i;
dstAlpha[j] = srcAlpha[scaleIndex];
dstAlpha[j + scaleSize] = (float)originOffset * dstAlpha[j];
}
}
}
core->MNNFp32ToLowp(tmpAlpha.data(), reinterpret_cast<int16_t*>(alphaPtr), scaleSize * 2);
} else {
if (int8Info->asymmetric) {
for (int i = 0; i < blockNum; ++i) {
auto dstAlpha = alphaPtr + i * hU * hP;
auto dstBias = biasPtr + i * hU * hP;
auto srcAlpha = int8Info->alpha.get();
for (int j = 0; j < outputCount; ++j) {
int scaleIndex = j * blockNum + i;
dstAlpha[j] = srcAlpha[2 * scaleIndex + 1];
dstBias[j] = srcAlpha[2 * scaleIndex] + (float)originOffset * dstAlpha[j];
}
}
} else {
for (int i = 0; i < blockNum; ++i) {
auto dstAlpha = alphaPtr + i * hU * hP;
auto dstBias = biasPtr + i * hU * hP;
auto srcAlpha = int8Info->alpha.get();
for (int j = 0; j < outputCount; ++j) {
int scaleIndex = j * blockNum + i;
dstAlpha[j] = srcAlpha[scaleIndex];
dstBias[j] = (float)originOffset * dstAlpha[j];
}
}
}
}
return true;
}
void DenseConvolutionTiledExecutor::selectLowMemoryMatmulFunc(lowMemoryMatmulUnit* matmulUnit, lowMemoryMatmulRemain* matmulRemain, float* weightBytes, int32_t weightQuantBits, const CoreFunctions* core) {
if (weightQuantBits == 8) {
*matmulUnit = core->MNNPackedMatMul_int8;
*matmulRemain = core->MNNPackedMatMulRemain_int8;
*weightBytes = 1;
}
}
DenseConvolutionTiledExecutor::DenseConvolutionTiledExecutor(const Convolution2DCommon* common, Backend* b,
const float* originWeight, size_t originWeightSize,
const float* bias, size_t biasSize, std::shared_ptr<ConvolutionCommon::Int8Common> int8Info)
: ConvolutionTiledExecutor(b, bias, biasSize) {
auto outputCount = (int)biasSize;
int eP, lP, hP;
auto core = static_cast<CPUBackend*>(b)->functions();
int bytes = core->bytes;
core->MNNGetMatMulPackMode(&eP, &lP, &hP);
bool useInt8Weight = 0 == originWeightSize;
if (useInt8Weight) {
MNN_ASSERT(nullptr != int8Info.get());
originWeightSize = int8Info->weight.size();
}
if (int8Info && int8Info->canUseInt4) {
originWeightSize *= 2;
}
// Don't use common->inputCount for old model common->inputCount is zero
auto srcCount = (int)originWeightSize / outputCount / common->kernelX() / common->kernelY();
auto lSize = srcCount * common->kernelX() * common->kernelY();
auto hU = UP_DIV(outputCount, hP);
auto lU = UP_DIV(srcCount, lP) * common->kernelX() * common->kernelY();
if (useInt8Weight) {
// Quantize weight to int8
auto allocSuccess = DenseConvolutionTiledExecutor::initQuantizeResource(int8Info, mResource, hU, hP, lU, lP, outputCount, srcCount, common->kernelX() * common->kernelY(), bytes);
if (!allocSuccess) {
mValid = false;
return;
}
} else {
if (core->matmulBytes != 0) {
bytes = core->matmulBytes;
}
mResource->mWeight.reset(Tensor::createDevice<uint8_t>(
{hU * hP, lU * lP, bytes}));
mValid = mValid && backend()->onAcquireBuffer(mResource->mWeight.get(), Backend::STATIC);
if (!mValid) {
return;
}
std::shared_ptr<Tensor> cache(Tensor::createDevice<uint8_t>({outputCount, srcCount * common->kernelX() * common->kernelY(), (int)sizeof(float)})); // cache must be float
mValid = mValid && backend()->onAcquireBuffer(cache.get(), Backend::STATIC);
if (!mValid) {
return;
}
initWeight(mResource->mWeight->host<float>(), originWeight, cache->host<float>(), srcCount, outputCount, common->kernelX() * common->kernelY(), core);
// MNN_PRINT("srcCount:%d, outputCount:%d, dense weight matrix tile:", srcCount, outputCount);
// formatMatrix(mResource->mWeight->host<float>(), {UP_DIV(outputCount, hP), lSize, hP});
backend()->onReleaseBuffer(cache.get(), Backend::STATIC);
}
mProxy.reset(new DenseConvolutionTiledImpl(common, b, mResource.get()));
}
DenseConvolutionTiledExecutor::DenseConvolutionTiledExecutor(std::shared_ptr<CPUConvolution::Resource> res, const Convolution2DCommon* common, Backend* b) : ConvolutionTiledExecutor(res, b) {
mProxy.reset(new DenseConvolutionTiledImpl(common, b, mResource.get()));
}
DenseConvolutionTiledExecutor::~DenseConvolutionTiledExecutor() {
// Do nothing
}
bool DenseConvolutionTiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
auto dense = new DenseConvolutionTiledExecutor(mResource, op->main_as_Convolution2D()->common(), bn);
dense->mProxy->mConvPerfconfig = mProxy->mConvPerfconfig;
*dst = dense;
return true;
}
ErrorCode DenseConvolutionTiledExecutor::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto code = mProxy->onExecute(mInputs, outputs);
return code;
}
ErrorCode DenseConvolutionTiledExecutor::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mInputs = {inputs[0], mResource->mWeight.get(), mResource->mBias.get()};
auto code = mProxy->onResize(mInputs, outputs);
if (NO_ERROR != code) {
return code;
}
return NO_ERROR;
}
ErrorCode ConvolutionTiledExecutorMultiInput::onExecute(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
int depth = inputs[1]->channel();
int outputCount = inputs[1]->batch();
auto function = static_cast<CPUBackend*>(backend())->functions();
if (nullptr != mTempBias) {
::memset(mTempBias->host<float>(), 0, mTempBias->elementSize() * function->bytes);
if (inputs.size() > 2) {
::memcpy(mTempBias->host<float>(), inputs[2]->host<float>(), inputs[2]->elementSize() * function->bytes);
}
}
auto cache = mTempWeightCache->host<float>();
auto source = inputs[1]->host<float>();
auto kernelSize = inputs[1]->stride(1);
// Swap k, ic
int dims[4] = {
depth,
kernelSize,
kernelSize,
depth
};
if (function->bytes < 4) {
// TODO: Opt it
// Lowp
source = mTempWeightCache->host<float>() + mTempWeightCache->stride(0);
function->MNNLowpToFp32(inputs[1]->host<int16_t>(), source, inputs[1]->elementSize());
for (int o=0; o<outputCount; ++o) {
auto dO = cache + o * depth * kernelSize;
auto sO = source + o * depth * kernelSize;
MNNTranspose32Bit((int32_t*)dO, (const int32_t*)sO, &dims[0]);
}
function->MNNFp32ToLowp(cache, (int16_t*)cache, inputs[1]->elementSize());
} else {
for (int o=0; o<outputCount; ++o) {
auto dO = cache + o * depth * kernelSize;
auto sO = source + o * depth * kernelSize;
MNNTranspose32Bit((int32_t*)dO, (const int32_t*)sO, &dims[0]);
}
}
function->MNNPackForMatMul_B(mTempWeight->host<float>(), mTempWeightCache->host<float>(), outputCount, kernelSize, depth, true);
return mProxy->onExecute(mInputs, outputs);
}
ErrorCode ConvolutionTiledExecutorMultiInput::onResize(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
int depth = inputs[1]->channel();
int outputCount = outputs[0]->channel();
auto function = static_cast<CPUBackend*>(backend())->functions();
int eP, lP, hP;
function->MNNGetMatMulPackMode(&eP, &lP, &hP);
auto kernelSize = depth * inputs[1]->stride(1);
mTempWeight.reset(Tensor::createDevice<float>(
{UP_DIV(outputCount, hP), UP_DIV(depth, lP) * inputs[1]->stride(1), lP * hP}));
if (function->bytes < 4) {
mTempWeightCache.reset(Tensor::createDevice<int32_t>({2, outputCount * kernelSize}));
} else {
mTempWeightCache.reset(Tensor::createDevice<float>({outputCount * kernelSize}));
}
auto res = backend()->onAcquireBuffer(mTempWeight.get(), Backend::DYNAMIC);
res = res && backend()->onAcquireBuffer(mTempWeightCache.get(), Backend::DYNAMIC);
mTempBias.reset();
if (!res) {
return OUT_OF_MEMORY;
}
if (inputs.size() > 2 && inputs[2]->elementSize() % hP == 0) {
mInputs = {inputs[0], mTempWeight.get(), inputs[2]};
} else {
auto hPackedSize = ALIMAX(hP, function->pack);
mTempBias.reset(Tensor::createDevice<float>({UP_DIV(outputCount, hPackedSize) * hPackedSize}));
backend()->onAcquireBuffer(mTempBias.get(), Backend::DYNAMIC);
mInputs = {inputs[0], mTempWeight.get(), mTempBias.get()};
}
backend()->onReleaseBuffer(mTempWeightCache.get(), Backend::DYNAMIC);
auto errorCode = mProxy->onResize(mInputs, outputs);
backend()->onReleaseBuffer(mTempWeight.get(), Backend::DYNAMIC);
if (nullptr != mTempBias) {
backend()->onReleaseBuffer(mTempBias.get(), Backend::DYNAMIC);
}
return errorCode;
}
void DenseConvolutionTiledImpl::getPackParameter(int* eP, int* lP, int* hP, const CoreFunctions* core) {
core->MNNGetMatMulPackMode(eP, lP, hP);
return;
}
PerfConfig DenseConvolutionTiledImpl::bestTileConvolutionConfig(const Convolution2DCommon *common, const Tensor *inputTensor,
const Tensor *outputTensor, int threadNumber, Backend* b) {
auto input = inputTensor;
Tensor *bias = nullptr;
auto core = static_cast<CPUBackend *>(b)->functions();
int bytes = core->bytes;
int unit = core->pack;
int ePMax, lP, hP;
core->MNNGetMatMulPackMode(&ePMax, &lP, &hP);
auto kernel_width = common->kernelX();
auto kernel_height = common->kernelY();
auto output = outputTensor;
auto batch = output->batch();
auto width = output->width();
auto height = output->height();
auto src_width = input->width();
auto icC4 = UP_DIV(input->channel(), unit);
auto ic = input->channel();
auto L = ic * common->kernelY() * common->kernelX();
auto outputChannel = output->channel();
auto padX = ConvolutionCommon::convolutionPad(inputTensor, outputTensor, common).first;
if (src_width == 1 && width == 1 && height > 1 && kernel_width == 1 && padX == 0) {
/* Swap x, y*/
width = height;
height = 1;
kernel_width = kernel_height;
kernel_height = 1;
}
auto kernelSize = common->kernelX() * common->kernelY();
auto plane = width * height * batch;
auto oC4 = UP_DIV(outputChannel, unit);
//In next major version these would be read from microbenchmark result file.
constexpr int roofLine = 20;
constexpr int indexCalculate = 3000;
constexpr int indexMem = 40;
PerfConfig denseConfig(false, 0, 0, 0, std::numeric_limits<float>().max());
for (int eP = ePMax; eP >= ePMax; eP -= 16) { // search space should be open after pack-free dense is available.
int tileCount = UP_DIV(plane, eP);
auto hTileCount = UP_DIV(outputChannel, hP);
float outerFlops[3], innerFlops[3], outerBandwidth[3], innerBandwidth[3], outer[3], inner[3], outerAcc = 0, innerAcc = 0;
float tailCost = 0.0, lastTail = 0.0;
if (plane % eP == 0) {
tailCost = 1.0f;
lastTail = 1.0f;
} else {
bool moreThanOnetail = tileCount % threadNumber > 1;
lastTail = (4.f * (plane % eP)) / eP;
tailCost = moreThanOnetail ? (std::max(1.0f, lastTail)) : lastTail;
}
float outerCoefficient = tailCost + ((tileCount - 1) / threadNumber);
float innerCoefficient = lastTail + ((plane - 1) / eP);
int indexNumber = UP_DIV(eP, width) * kernel_width * kernel_height;
outerFlops[0] = outerCoefficient * indexNumber * indexCalculate * unit;
outerFlops[1] = 0;
outerFlops[2] = outerCoefficient * eP * (2 * L) * oC4 * unit;
outerBandwidth[0] = outerCoefficient * indexNumber * indexMem;
outerBandwidth[1] = outerCoefficient * indexNumber * (2 * eP * ic);
outerBandwidth[2] = outerCoefficient * (eP * 2 * L + oC4 * unit * 2 * L + eP * oC4 * unit);
innerFlops[0] = innerCoefficient * indexNumber * indexCalculate * unit;
innerFlops[1] = 0;
innerFlops[2] = innerCoefficient * eP * (2 * L) * UP_DIV(oC4, threadNumber) * unit;
innerBandwidth[0] = innerCoefficient * indexNumber * indexMem;
innerBandwidth[1] = innerCoefficient * (2 * eP * unit + 10 * sizeof(int) * unit) * UP_DIV(icC4 * indexNumber, threadNumber);
innerBandwidth[2] = innerCoefficient * (eP * 2 * L + unit * 2* L + eP * unit) * UP_DIV(oC4, threadNumber);
for (int i = 0; i < sizeof(outerFlops) / sizeof(float); i++) {
outer[i] = std::max(outerBandwidth[i] * roofLine, outerFlops[i]);
inner[i] = std::max(innerBandwidth[i] * roofLine, innerFlops[i]);
outerAcc += outer[i];
innerAcc += inner[i];
}
PerfConfig thisConfig(false, eP, eP, 0, -1);
thisConfig.isParallelInner = outerAcc > innerAcc && 0 == core->matmulBytes;
thisConfig.instructionCosts = outerAcc > innerAcc ? innerAcc : outerAcc;
if (thisConfig.instructionCosts < denseConfig.instructionCosts) {
denseConfig = thisConfig;
}
}
return denseConfig;
}
ErrorCode DenseConvolutionTiledImpl::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
CPUConvolution::onResize(inputs, outputs);
auto input = inputs[0];
auto weight = inputs[1];
Tensor *bias = nullptr;
if (inputs.size() > 2) {
bias = inputs[2];
}
auto core = static_cast<CPUBackend *>(backend())->functions();
int bytes = core->bytes;
float weightBytes = bytes;
int unit = core->pack;
int matmulBytes = bytes;
if (core->matmulBytes != 0) {
matmulBytes = core->matmulBytes;
}
auto packA = core->MNNPackC4ForMatMul_A;
int eP, lP, hP;
getPackParameter(&eP, &lP, &hP, core);
auto matmulUnit = core->MNNPackedMatMul;
auto matmulRemain = core->MNNPackedMatMulRemain;
const uint8_t* dequantAlpha = nullptr;
const uint8_t* dequantBias = nullptr;
auto ic = input->channel();
auto icC4 = UP_DIV(ic, unit);
auto L = ROUND_UP(ic, lP) * mCommon->kernelY() * mCommon->kernelX();
auto tileC = std::max(unit, hP);
int blockSize = L;
int blockNum = 1;
float halfStride = 1;
size_t weightStride = 0;
#ifdef MNN_LOW_MEMORY
if (mResource && mResource->mDequantize.bits <= 8) {
MNN_ASSERT(mResource->mDequantize.bits == 8);
DenseConvolutionTiledExecutor::selectLowMemoryMatmulFunc(&matmulUnit, &matmulRemain, &weightBytes, mResource->mDequantize.bits, core);
int scaleSize = mResource->mDequantize.mScaleBias->size() / (2 * bytes);
blockNum = scaleSize / (mResource->hU * mResource->hP);
blockSize /= blockNum;
dequantAlpha = mResource->mDequantize.mScaleBias->host<uint8_t>();
dequantBias = dequantAlpha + scaleSize * bytes;
weightStride = (L - blockSize) * hP;
}
#endif
auto kernel_width = mCommon->kernelX();
auto kernel_height = mCommon->kernelY();
auto output = outputs[0];
auto batch = output->batch();
int threadNumber = ((CPUBackend *)backend())->threadNumber();
int LRoundup = ROUND_UP(L, lP);
int LRoundupC4 = UP_DIV(LRoundup, unit);
auto outputChannel = output->channel();
auto oC4 = UP_DIV(outputChannel, tileC);
auto ocUp4 = ROUND_UP(outputChannel, hP);
auto kernelSize = mCommon->kernelX() * mCommon->kernelY();
ConvolutionTiledExecutor::setIm2ColParameter(mIm2ColParameters, mCommon, input, output, mPadX, mPadY, core, nullptr);
mTempBufferTranspose.buffer().type = halide_type_of<uint8_t>();
mTempBufferTranspose.buffer().dimensions = 2;
mTempBufferTranspose.buffer().dim[0].extent = threadNumber;
mTempBufferTranspose.buffer().dim[1].extent = UP_DIV(L, lP) * lP * eP * matmulBytes;
TensorUtils::setLinearLayout(&mTempBufferTranspose);
auto plane = mIm2ColParameters.ow * mIm2ColParameters.oh * batch;
int tileCount = UP_DIV(plane, eP);
mConvPerfconfig = bestTileConvolutionConfig(mCommon, input, output, threadNumber, backend());
bool success = backend()->onAcquireBuffer(&mTempBufferTranspose, Backend::DYNAMIC);
if (!success) {
return OUT_OF_MEMORY;
}
auto bufferAlloc = static_cast<CPUBackend *>(backend())->getBufferAllocator();
auto maxLine = UP_DIV(eP, mIm2ColParameters.ow) + 1;
auto tempPtr = bufferAlloc->alloc(kernelSize * maxLine * threadNumber * (4 * sizeof(int32_t) + sizeof(float *)));
if (tempPtr.invalid()) {
return OUT_OF_MEMORY;
}
backend()->onReleaseBuffer(&mTempBufferTranspose, Backend::DYNAMIC);
bufferAlloc->free(tempPtr);
auto postParameters = getPostParameters();
mFunction.first = threadNumber;
if (mConvPerfconfig.isParallelInner) {
auto rt = static_cast<const CPURuntime*>(backend()->getRuntime());
std::vector<int> ocC4ParralSize(threadNumber + 1);
ocC4ParralSize[0] = 0;
static_cast<CPUBackend *>(backend())->computeDivideSizes(oC4, ocC4ParralSize.data()+1);
mFunction.second = [=](int placeholder) {
const float* biasPtr = bias ? bias->host<float>() : nullptr;
auto gemmBuffer = mTempBufferTranspose.host<uint8_t>() + mTempBufferTranspose.stride(0) * 0;
auto srcPtr = (float const **)(tempPtr.ptr() + 0 * kernelSize * maxLine * (4 * sizeof(int32_t) + sizeof(float *)));
auto el = (int32_t *)(srcPtr + kernelSize * maxLine);
auto weightPtr = weight->host<uint8_t>();
constexpr int InfoSize = 4;
int32_t shapeInfo[InfoSize];
int32_t* info = shapeInfo;
info[1] = mIm2ColParameters.iw * mIm2ColParameters.ih * batch;
info[2] = eP;
info[3] = mIm2ColParameters.strideX;
size_t shapeParameters[PARAMETERSIZE];
size_t* parameters = shapeParameters;
parameters[0] = eP * bytes;
parameters[1] = blockSize;
parameters[2] = outputChannel;
parameters[3] = plane * unit * bytes;
parameters[4] = 0;
parameters[5] = weightStride; // Only used when block quant
parameters[6] = 0;
auto dstOrigin = output->host<uint8_t>();
auto srcOrigin = input->host<uint8_t>();
std::vector<int> im2colParallelSize(threadNumber + 1);
im2colParallelSize[0] = 0;
for (int x = 0; x < tileCount; x += 1) {
int start = (int)x * eP;
int remain = plane - start;
int xC = remain > eP ? eP : remain;
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo(srcPtr, el, start, xC, mIm2ColParameters, srcOrigin, bytes);
int number = res.first;
bool needZero = res.second;
info[0] = number;
if (needZero || lP != 1) {
::memset(gemmBuffer, 0, mTempBufferTranspose.stride(0));
}
info[0] = 1;
int hw4Stride = info[1] * unit * bytes;
static_cast<CPUBackend *>(backend())->computeDivideSizes(number * icC4, im2colParallelSize.data() + 1);
im2colParallelSize[0] = 0;
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
int threadEL[4];
int ticSta = im2colParallelSize[tId];
int ticEnd = im2colParallelSize[tId+1];
for(int tic_inumber = ticSta; tic_inumber < ticEnd; tic_inumber++) {
int inumber = tic_inumber / icC4;
int t_ic = tic_inumber % icC4;
memcpy(threadEL, el + 4 * inumber, 4 * sizeof(int));
threadEL[1] = std::min(ic - (t_ic * unit), unit);
const float* source = (const float*)((const uint8_t*)(srcPtr[inumber]) + t_ic * hw4Stride);
auto gemmDest = gemmBuffer + t_ic * unit * eP * bytes;
packA((float *)gemmDest, &source, info, threadEL);
}
}
MNN_CONCURRENCY_END();
if (xC == eP) {
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
size_t paraParameters[PARAMETERSIZE];
memcpy(paraParameters, parameters, PARAMETERSIZE * sizeof(size_t));
for (int t_oc = ocC4ParralSize[tId]; t_oc < ocC4ParralSize[tId+1]; ++t_oc) {
int ocIndex = t_oc * tileC;
auto _dstFloatPtr = reinterpret_cast<float*>(dstOrigin + (ocIndex / unit * plane + start) * unit * bytes);
auto _weightFloatPtr = reinterpret_cast<const float*>(weightPtr + int((ocIndex / hP * LRoundup * hP) * weightBytes));
auto _biasFloatPtr = reinterpret_cast<const float*>(reinterpret_cast<const uint8_t*>(biasPtr) + ocIndex * bytes);
paraParameters[2] = std::min(outputChannel - ocIndex, tileC);
auto k = reinterpret_cast<const uint8_t*>(dequantAlpha + ocIndex * bytes);
auto b = reinterpret_cast<const uint8_t*>(dequantBias + ocIndex * bytes);
const float* relufp32 = nullptr;
const float* exeBiasPtr = nullptr;
int finishedL = 0;
int wquantStride = 0;
auto _weightPtr = reinterpret_cast<const int8_t*>(_weightFloatPtr);
uint8_t* _APtr = reinterpret_cast<uint8_t*>(gemmBuffer);
for (int bk = 0; bk < blockNum; ++bk) {
paraParameters[6] = bk;
if (bk == blockNum - 1) {
relufp32 = postParameters.data();
exeBiasPtr = _biasFloatPtr;
}
finishedL = blockSize * bk;
wquantStride = static_cast<int32_t>(blockSize * bk * hP * halfStride);
matmulUnit(_dstFloatPtr, (float*)(_APtr + eP * finishedL * bytes), (float*)(_weightPtr + wquantStride), paraParameters, relufp32, exeBiasPtr, (float*)(k + bk * ocUp4 * bytes), (float*)(b + bk * ocUp4 * bytes));
}
}
}
MNN_CONCURRENCY_END();
} else {
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
size_t paraParameters[PARAMETERSIZE];
memcpy(paraParameters, parameters, PARAMETERSIZE * sizeof(size_t));
for (int t_oc = ocC4ParralSize[tId]; t_oc < ocC4ParralSize[tId+1]; ++t_oc) {
int ocIndex = t_oc * tileC;
auto _dstFloatPtr = reinterpret_cast<float*>(dstOrigin + (ocIndex / unit * plane + start) * unit * bytes);
auto _weightFloatPtr = reinterpret_cast<const float*>(weightPtr + int((ocIndex / hP * LRoundup * hP) * weightBytes));
auto _biasFloatPtr = reinterpret_cast<const float*>(reinterpret_cast<const uint8_t*>(biasPtr) + ocIndex * bytes);
paraParameters[2] = std::min(outputChannel - ocIndex, tileC);
auto k = reinterpret_cast<const uint8_t*>(dequantAlpha + ocIndex * bytes);
auto b = reinterpret_cast<const uint8_t*>(dequantBias + ocIndex * bytes);
const float* relufp32 = nullptr;
const float* exeBiasPtr = nullptr;
int finishedL = 0;
int wquantStride = 0;
const int8_t* _weightPtr = reinterpret_cast<const int8_t*>(_weightFloatPtr);
uint8_t* _APtr = reinterpret_cast<uint8_t*>(gemmBuffer);
for (int bk = 0; bk < blockNum; ++bk) {
paraParameters[6] = bk;
if (bk == blockNum - 1) {
relufp32 = postParameters.data();
exeBiasPtr = _biasFloatPtr;
}
finishedL = blockSize * bk;
wquantStride = static_cast<int32_t>(blockSize * bk * hP * halfStride);
matmulRemain(_dstFloatPtr, (float*)(_APtr + eP * finishedL * bytes), (float*)(_weightPtr + wquantStride), xC, paraParameters, relufp32, exeBiasPtr, (float*)(k + bk * ocUp4 * bytes), (float*)(b + bk * ocUp4 * bytes));
}
}
}
MNN_CONCURRENCY_END();
}
}
};
} else {
std::vector<int> divides(threadNumber + 1);
divides[0] = 0;
static_cast<CPUBackend *>(backend())->computeDivideSizes(tileCount, divides.data() + 1);
mFunction.second = [=](int tId) {
const float* biasPtr = bias ? bias->host<float>() : nullptr;
auto gemmBuffer = mTempBufferTranspose.host<uint8_t>() + mTempBufferTranspose.stride(0) * tId;
auto srcPtr = (float const **)(tempPtr.ptr() + tId * kernelSize * maxLine * (4 * sizeof(int32_t) + sizeof(float *)));
auto el = (int32_t *)(srcPtr + kernelSize * maxLine);
auto weightPtr = weight->host<float>();
int32_t info[4];
info[1] = mIm2ColParameters.iw * mIm2ColParameters.ih * batch;
info[2] = eP;
info[3] = mIm2ColParameters.strideX;
size_t parameters[PARAMETERSIZE];
parameters[0] = eP * bytes;
parameters[1] = blockSize;
parameters[2] = outputChannel;
parameters[3] = plane * unit * bytes;
parameters[4] = 0;
parameters[5] = weightStride; // Only used when block quant
parameters[6] = 0;
auto dstOrigin = output->host<uint8_t>();
auto srcOrigin = input->host<uint8_t>();
int tEnd = divides[tId+1];
int tStart = divides[tId];
for (int x = (int)tStart; x < tEnd; ++x) {
int start = (int)x * eP;
int remain = plane - start;
int xC = remain > eP ? eP : remain;
auto res = ConvolutionTiledExecutor::turnIm2ColToBlitInfo(srcPtr, el, start, xC, mIm2ColParameters, srcOrigin, bytes);
auto number = res.first;
bool needZero = res.second;
info[0] = number;
if (needZero || lP != 1) {
::memset(gemmBuffer, 0, mTempBufferTranspose.stride(0));
}
if (number > 0) {
packA((float *)gemmBuffer, srcPtr, info, el);
}
/*
for (int kk=0; kk < mIm2ColParameters.kernelX * mIm2ColParameters.kernelY; ++kk) {
for (int xx=0; xx < ROUND_UP(input->channel(), lP) * eP; ++xx) {
printf("%f ", ((__fp16*)gemmBuffer)[kk * ROUND_UP(input->channel(), lP) * eP + xx]);
if (xx % (eP * lP) == (eP * lP -1)) printf("\n");
}
}
*/
int finishedL = 0;
int wquantStride = 0;
int8_t* _weightPtr = reinterpret_cast<int8_t*>(weightPtr);
auto _dstFloatPtr = reinterpret_cast<float*>(dstOrigin + start * unit * bytes);
const float* relufp32 = nullptr;
const float* exeBiasPtr = nullptr;
if (xC == eP) {
// matmulUnit(_dstFloatPtr, (float*)gemmBuffer, (float*)weightPtr, parameters, postParameters.data(), biasPtr, k, b);
for (int bk = 0; bk < blockNum; ++bk) {
parameters[6] = bk;
if (bk == blockNum - 1) {
relufp32 = postParameters.data();
exeBiasPtr = biasPtr;
}
finishedL = blockSize * bk;
wquantStride = static_cast<int32_t>(blockSize * bk * hP * halfStride);
matmulUnit(_dstFloatPtr, (float*)(gemmBuffer + bytes * eP * finishedL), (float*)(_weightPtr + wquantStride), parameters, relufp32, exeBiasPtr, (float*)(dequantAlpha + bk * ocUp4 * bytes), (float*)(dequantBias + bk * ocUp4 * bytes));
}
} else {
for (int bk = 0; bk < blockNum; ++bk) {
parameters[6] = bk;
if (bk == blockNum - 1) {
relufp32 = postParameters.data();
exeBiasPtr = biasPtr;
}
finishedL = blockSize * bk;
wquantStride = static_cast<int32_t>(blockSize * bk * hP * halfStride);
matmulRemain(_dstFloatPtr, (float*)(gemmBuffer + eP * bytes * finishedL), (float*)(_weightPtr + wquantStride), xC, parameters, relufp32, exeBiasPtr, (float*)(dequantAlpha + bk * ocUp4 * bytes), (float*)(dequantBias + bk * ocUp4 * bytes ));
}
// matmulRemain(_dstFloatPtr, (float*)gemmBuffer, (float*)weightPtr, xC, parameters, postParameters.data(), biasPtr, k, b);
}
}
};
}
return NO_ERROR;
}
ErrorCode DenseConvolutionTiledImpl::onExecute(const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
if (mConvPerfconfig.isParallelInner) {
mFunction.second(0);
} else {
MNN_CONCURRENCY_BEGIN(tId, mFunction.first) {
mFunction.second((int)tId);
}
MNN_CONCURRENCY_END();
}
return NO_ERROR;
}
} // namespace MNN