mirror of https://github.com/alibaba/MNN.git
2474 lines
118 KiB
C++
2474 lines
118 KiB
C++
//
|
|
// Int8FunctionsOpt.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/08/15.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <math.h>
|
|
#include <cstring> // for memset
|
|
#include "Int8FunctionsOpt.h"
|
|
#include "core/Macro.h"
|
|
#include "core/CommonCompute.hpp"
|
|
#include "CommonOptFunction.h"
|
|
#include "math/Vec.hpp"
|
|
|
|
#ifdef MNN_USE_NEON
|
|
#include <arm_neon.h>
|
|
|
|
extern "C" {
|
|
void MNNGemmInt8AddBiasScale_16x4_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realCount);
|
|
void MNNGemmInt8AddBiasScale_16x4_Unit_FAST(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realCount);
|
|
void MNNGemmInt8AddBiasScale_16x4_w4_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realCount);
|
|
void MNNLineDepthWiseInt8AddBiasScaleUnit(int8_t* dst, const int8_t* src, const int8_t* weight, const QuanPostTreatParameters* parameters, size_t width,
|
|
size_t src_w_step, size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step, int8_t* idxOrder=nullptr);
|
|
void MNNMaxPoolInt8(int8_t* dst, int8_t* src, size_t outputWidth, size_t inputWidth, size_t kernelx, size_t kernely, size_t stridesx);
|
|
|
|
void MNNAvgPoolInt8(int8_t* dst, int8_t* src, size_t outputWidth, size_t inputWidth, size_t kernelx, size_t kernely, size_t stridesx, ssize_t paddingx, ssize_t factor);
|
|
void MNNReluWithSlopeChannelInt8(int8_t* dst, const int8_t* src, const float* slope, size_t planeNumber, size_t depthQuad, const QuanPrePostParameters *params, size_t pack);
|
|
#if defined(__aarch64__) // aarch32 sdot workaround
|
|
void MNNGemmInt8AddBiasScale_ARMV82_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNGemmInt8AddBiasScale_ARMV86_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNLineDepthWiseInt8AddBiasScale_ARMV82_Unit3X3(int8_t* dst, const int8_t* src, const int8_t* weight, const QuanPostTreatParameters* parameters, size_t width,
|
|
size_t src_w_step, size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step, int8_t* idxOrder=nullptr);
|
|
void MNNSumByAxisLForMatmul_A_ARM86(float* dest, int8_t* source, const float* dequantScale, ssize_t realDstCount, SumByAxisParams sumParams);
|
|
void MNNSumByAxisLForMatmul_A_ARM82(float* dest, int8_t* source, const float* dequantScale, ssize_t realDstCount, SumByAxisParams sumParams);
|
|
void MNNSumByAxisLForMatmul_A_SME2(float* dest, int8_t* source, const float* dequantScale, ssize_t realDstCount, SumByAxisParams sumParams);
|
|
#if defined(MNN_LOW_MEMORY)
|
|
// int4 weight gemmInt8 kernel
|
|
void MNNGemmInt8AddBiasScale_ARMV82_w4_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNGemmInt8AddBiasScale_ARMV86_w4_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNGemmInt8AddBiasScale_16x4_w4_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realDstCount);
|
|
// Tools to dynamic-quant fp16-input data.
|
|
#ifdef MNN_USE_ARMV82
|
|
void DynamicQuanInput_ARM82(const float* src, int8_t* dst, size_t sizeQuad, const float* scalep, ssize_t minValue,
|
|
ssize_t maxValue, const float* zeroPoint, ssize_t quanParamVec);
|
|
// int8 weight gemmInt8 kernel to return fp16-output data.
|
|
void MNNGemmInt8AddBiasScale_ARMV82_Unit_FP16(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNGemmInt8AddBiasScale_ARMV82_w4_Unit_FP16(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNGemmInt8AddBiasScale_ARMV86_Unit_FP16(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNGemmInt8AddBiasScale_ARMV86_w4_Unit_FP16(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad,
|
|
const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void DynamicQuanInputAndReorder_ARM82(const float* src, int8_t* dst, size_t planeSize, const float* scale, ssize_t aMin,
|
|
ssize_t aMax, const float* zeroPoint, size_t ocQuad, size_t offset);
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef MNN_SME2
|
|
void MNNGemmInt8AddBiasScale_SME2_w4_Fp32(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad, const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNGemmInt8AddBiasScale_SME2_w8_Fp32(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad, const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNGemmInt8AddBiasScale_SME2_w4_Fp16(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad, const QuanPostTreatParameters* post, size_t realDstCount);
|
|
void MNNGemmInt8AddBiasScale_SME2_w8_Fp16(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad, const QuanPostTreatParameters* post, size_t realDstCount);
|
|
#endif
|
|
#endif // __aarch64__
|
|
}
|
|
#endif // MNN_USE_NEON
|
|
|
|
/*
|
|
layout should be optimized for int8
|
|
source: source matrix is h x l
|
|
transpose: if false, export compressed matrix as h x l, other export as l x h.
|
|
*/
|
|
void MNNPackForSparseQuantMatMul_B(int8_t* dest, unsigned int* NNZMap, int* dataOffsetMap, int sparseBlockOC, const int8_t* source, size_t h, size_t kernelCount, size_t icCount, const int eP) {
|
|
// 1. in quant convolution, source B layout is OC x (IC * KH * KW),
|
|
// the dest layout of weight is BCSC(block compressed sparse colum) format, which is OC(!=0) x (KH*KW*IC!=0), as a canceled result, just do BCSR
|
|
// 2. IC would be switched into the last dim.
|
|
|
|
// BCSC
|
|
int columOffset = 0;
|
|
int i = 0;
|
|
auto subSource = source;
|
|
size_t l = kernelCount * icCount;
|
|
for (; i + sparseBlockOC <= h; i += sparseBlockOC) {
|
|
*NNZMap = 0;
|
|
for(int ik = 0; ik < kernelCount; ik += 1) {
|
|
auto kernelSource = subSource + ik;
|
|
for(int ic = 0; ic < icCount; ic += 1) {
|
|
if (!MNN::CommonCompute::checkAllZeros(kernelSource, l, sparseBlockOC, 1)) {
|
|
for (int ioc = 0; ioc < sparseBlockOC; ioc++) {
|
|
*dest = *(kernelSource + ioc * l);
|
|
dest++;
|
|
}
|
|
*NNZMap = *NNZMap + 1;
|
|
*dataOffsetMap = columOffset;
|
|
dataOffsetMap++;
|
|
columOffset = 0;
|
|
}
|
|
columOffset += eP;
|
|
kernelSource += kernelCount;
|
|
}
|
|
}
|
|
NNZMap++;
|
|
columOffset -= l * eP;
|
|
subSource += sparseBlockOC * l;
|
|
}
|
|
|
|
for (; i < h; i++) {
|
|
*NNZMap = 0;
|
|
for(int ik = 0; ik < kernelCount; ik += 1) {
|
|
auto kernelSource = subSource + ik;
|
|
for(int ic = 0; ic < icCount; ic += 1) {
|
|
if (*kernelSource != 0) {
|
|
*dest = *kernelSource;
|
|
dest++;
|
|
*NNZMap = *NNZMap + 1;
|
|
*dataOffsetMap = columOffset;
|
|
dataOffsetMap++;
|
|
columOffset = 0;
|
|
}
|
|
columOffset += eP;
|
|
kernelSource += kernelCount;
|
|
}
|
|
}
|
|
NNZMap++;
|
|
columOffset -= l * eP;
|
|
subSource += l;
|
|
}
|
|
|
|
*dataOffsetMap = columOffset; //
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
void MNNGetSparseQuantMatMulPackMode(int* eP, int *lP, int* hP) {
|
|
#if defined(__arm__) && !defined(__aarch64__)
|
|
*eP = 8;
|
|
#else
|
|
*eP = 16;
|
|
#endif
|
|
*lP = 1;
|
|
*hP = 4;
|
|
// hp is corresponding to sparse block along right matrix colum dimension. in ramdom sparse, it is 1.
|
|
return;
|
|
}
|
|
|
|
static void _MNNPackC4Int8ForMatMul_ASparse(int8_t* destOrigin, int8_t const** sourceGroup, const int32_t* info, const int32_t* el) {
|
|
int number = info[0];
|
|
int eReal = info[1];
|
|
int eDest = info[2];
|
|
int offset = info[3];
|
|
for (int n=0; n<number; ++n) {
|
|
int e = el[4 * n + 0];
|
|
int l = el[4 * n + 1];
|
|
int eOffset = el[4 * n + 2];
|
|
int lOffset = el[4 * n + 3];
|
|
auto dest = destOrigin + lOffset * eDest + eOffset;
|
|
auto source = sourceGroup[n];
|
|
|
|
for (int y=0; y<e; ++y) {
|
|
auto yR = y % eDest;
|
|
for (int x=0; x<l; ++x) {
|
|
auto xR = x % 4;
|
|
auto xC = x / 4;
|
|
dest[(x) * eDest + yR] = source[xC * eReal * 4 + y * 4 * offset + xR];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef MNN_USE_NEON
|
|
|
|
void MNNPackedSparseQuantMatMulEpx1(int8_t* C, const int8_t* A, const int8_t* B, const size_t* sparseQuantParam, const QuanPostTreatParameters* post, unsigned int* NNZMap, int* dataOffsetMap) {
|
|
|
|
size_t eSize = sparseQuantParam[0];
|
|
size_t eP = sparseQuantParam[1];
|
|
size_t aStride = sparseQuantParam[2];
|
|
size_t l = sparseQuantParam[3];
|
|
size_t h = sparseQuantParam[4];
|
|
size_t cStride = sparseQuantParam[5];
|
|
|
|
const int32_t* bias = post->bias;
|
|
const float* scales = post->scale;
|
|
const int32_t maxValue = post->maxValue;
|
|
const int32_t minValue = post->minValue;
|
|
|
|
const int sparseBlockOC = 4;
|
|
const int8_t * a = A;
|
|
size_t ie = 0;
|
|
for (ie = 0; ie < eSize && eP <= eSize; ie += eP) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
a += diff;
|
|
const int8_t * w = B;
|
|
int8_t * blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
|
|
for (size_t ih = 0; ih < h; ih++) {
|
|
auto ihPack = ih >> 2;
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihPack * cStride + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
int32_t acc1 = initValue;
|
|
int32_t acc2 = initValue;
|
|
int32_t acc3 = initValue;
|
|
int32_t acc4 = initValue;
|
|
int32_t acc5 = initValue;
|
|
int32_t acc6 = initValue;
|
|
int32_t acc7 = initValue;
|
|
int32_t acc8 = initValue;
|
|
int32_t acc9 = initValue;
|
|
int32_t acc10 = initValue;
|
|
int32_t acc11 = initValue;
|
|
int32_t acc12 = initValue;
|
|
int32_t acc13 = initValue;
|
|
int32_t acc14 = initValue;
|
|
int32_t acc15 = initValue;
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t a2 = a[2];
|
|
const int8_t a3 = a[3];
|
|
const int8_t a4 = a[4];
|
|
const int8_t a5 = a[5];
|
|
const int8_t a6 = a[6];
|
|
const int8_t a7 = a[7];
|
|
const int8_t a8 = a[8];
|
|
const int8_t a9 = a[9];
|
|
const int8_t a10 = a[10];
|
|
const int8_t a11 = a[11];
|
|
const int8_t a12 = a[12];
|
|
const int8_t a13 = a[13];
|
|
const int8_t a14 = a[14];
|
|
const int8_t a15 = a[15];
|
|
|
|
const int8_t oneW = *w++;
|
|
|
|
// MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {16});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += (int32_t)a0 * (int32_t)oneW;
|
|
acc1 += (int32_t)a1 * (int32_t)oneW;
|
|
acc2 += (int32_t)a2 * (int32_t)oneW;
|
|
acc3 += (int32_t)a3 * (int32_t)oneW;
|
|
acc4 += (int32_t)a4 * (int32_t)oneW;
|
|
acc5 += (int32_t)a5 * (int32_t)oneW;
|
|
acc6 += (int32_t)a6 * (int32_t)oneW;
|
|
acc7 += (int32_t)a7 * (int32_t)oneW;
|
|
acc8 += (int32_t)a8 * (int32_t)oneW;
|
|
acc9 += (int32_t)a9 * (int32_t)oneW;
|
|
acc10 += (int32_t)a10 * (int32_t)oneW;
|
|
acc11 += (int32_t)a11 * (int32_t)oneW;
|
|
acc12 += (int32_t)a12 * (int32_t)oneW;
|
|
acc13 += (int32_t)a13 * (int32_t)oneW;
|
|
acc14 += (int32_t)a14 * (int32_t)oneW;
|
|
acc15 += (int32_t)a15 * (int32_t)oneW;
|
|
}
|
|
|
|
int8_t result0; // in assemmbly code, consider reuse acc0[0-8] bit
|
|
int8_t result1;
|
|
int8_t result2;
|
|
int8_t result3;
|
|
int8_t result4;
|
|
int8_t result5;
|
|
int8_t result6;
|
|
int8_t result7;
|
|
int8_t result8;
|
|
int8_t result9;
|
|
int8_t result10;
|
|
int8_t result11;
|
|
int8_t result12;
|
|
int8_t result13;
|
|
int8_t result14;
|
|
int8_t result15;
|
|
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
result1 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc1)), float(minValue))));
|
|
result2 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc2)), float(minValue))));
|
|
result3 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc3)), float(minValue))));
|
|
result4 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc4)), float(minValue))));
|
|
result5 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc5)), float(minValue))));
|
|
result6 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc6)), float(minValue))));
|
|
result7 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc7)), float(minValue))));
|
|
result8 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc8)), float(minValue))));
|
|
result9 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc9)), float(minValue))));
|
|
result10 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc10)), float(minValue))));
|
|
result11 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc11)), float(minValue))));
|
|
result12 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc12)), float(minValue))));
|
|
result13 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc13)), float(minValue))));
|
|
result14 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc14)), float(minValue))));
|
|
result15 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc15)), float(minValue))));
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
result1 = static_cast<int8_t>(std::max(std::min(maxValue, acc1), minValue));
|
|
result2 = static_cast<int8_t>(std::max(std::min(maxValue, acc2), minValue));
|
|
result3 = static_cast<int8_t>(std::max(std::min(maxValue, acc3), minValue));
|
|
result4 = static_cast<int8_t>(std::max(std::min(maxValue, acc4), minValue));
|
|
result5 = static_cast<int8_t>(std::max(std::min(maxValue, acc5), minValue));
|
|
result6 = static_cast<int8_t>(std::max(std::min(maxValue, acc6), minValue));
|
|
result7 = static_cast<int8_t>(std::max(std::min(maxValue, acc7), minValue));
|
|
result8 = static_cast<int8_t>(std::max(std::min(maxValue, acc8), minValue));
|
|
result9 = static_cast<int8_t>(std::max(std::min(maxValue, acc9), minValue));
|
|
result10 = static_cast<int8_t>(std::max(std::min(maxValue, acc10), minValue));
|
|
result11 = static_cast<int8_t>(std::max(std::min(maxValue, acc11), minValue));
|
|
result12 = static_cast<int8_t>(std::max(std::min(maxValue, acc12), minValue));
|
|
result13 = static_cast<int8_t>(std::max(std::min(maxValue, acc13), minValue));
|
|
result14 = static_cast<int8_t>(std::max(std::min(maxValue, acc14), minValue));
|
|
result15 = static_cast<int8_t>(std::max(std::min(maxValue, acc15), minValue));
|
|
}
|
|
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
c[4] = result1;
|
|
c[4 * 2] = result2;
|
|
c[4 * 3] = result3;
|
|
c[4 * 4] = result4;
|
|
c[4 * 5] = result5;
|
|
c[4 * 6] = result6;
|
|
c[4 * 7] = result7;
|
|
c[4 * 8] = result8;
|
|
c[4 * 9] = result9;
|
|
c[4 * 10] = result10;
|
|
c[4 * 11] = result11;
|
|
c[4 * 12] = result12;
|
|
c[4 * 13] = result13;
|
|
c[4 * 14] = result14;
|
|
c[4 * 15] = result15;
|
|
}
|
|
a += aStride;
|
|
}
|
|
if (eSize & 0x08) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
// a = blockA + diff;
|
|
a += diff;
|
|
const int8_t* w = B;
|
|
int8_t* blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
for (size_t ih = 0; ih < h; ih++) {
|
|
auto ihPack = ih >> 2;
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihPack * cStride + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
int32_t acc1 = initValue;
|
|
int32_t acc2 = initValue;
|
|
int32_t acc3 = initValue;
|
|
int32_t acc4 = initValue;
|
|
int32_t acc5 = initValue;
|
|
int32_t acc6 = initValue;
|
|
int32_t acc7 = initValue;
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t a2 = a[2];
|
|
const int8_t a3 = a[3];
|
|
const int8_t a4 = a[4];
|
|
const int8_t a5 = a[5];
|
|
const int8_t a6 = a[6];
|
|
const int8_t a7 = a[7];
|
|
const int8_t oneW = *w++;
|
|
// MNN_PRINT("8-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%d, a value[0-7]:\n", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {8});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += int32_t(a0) * int32_t(oneW);
|
|
acc1 += int32_t(a1) * int32_t(oneW);
|
|
acc2 += int32_t(a2) * int32_t(oneW);
|
|
acc3 += int32_t(a3) * int32_t(oneW);
|
|
acc4 += int32_t(a4) * int32_t(oneW);
|
|
acc5 += int32_t(a5) * int32_t(oneW);
|
|
acc6 += int32_t(a6) * int32_t(oneW);
|
|
acc7 += int32_t(a7) * int32_t(oneW);
|
|
}
|
|
|
|
int8_t result0;
|
|
int8_t result1;
|
|
int8_t result2;
|
|
int8_t result3;
|
|
int8_t result4;
|
|
int8_t result5;
|
|
int8_t result6;
|
|
int8_t result7;
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
result1 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc1)), float(minValue))));
|
|
result2 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc2)), float(minValue))));
|
|
result3 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc3)), float(minValue))));
|
|
result4 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc4)), float(minValue))));
|
|
result5 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc5)), float(minValue))));
|
|
result6 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc6)), float(minValue))));
|
|
result7 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc7)), float(minValue))));
|
|
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
result1 = static_cast<int8_t>(std::max(std::min(maxValue, acc1), minValue));
|
|
result2 = static_cast<int8_t>(std::max(std::min(maxValue, acc2), minValue));
|
|
result3 = static_cast<int8_t>(std::max(std::min(maxValue, acc3), minValue));
|
|
result4 = static_cast<int8_t>(std::max(std::min(maxValue, acc4), minValue));
|
|
result5 = static_cast<int8_t>(std::max(std::min(maxValue, acc5), minValue));
|
|
result6 = static_cast<int8_t>(std::max(std::min(maxValue, acc6), minValue));
|
|
result7 = static_cast<int8_t>(std::max(std::min(maxValue, acc7), minValue));
|
|
}
|
|
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
c[4] = result1;
|
|
c[4 * 2] = result2;
|
|
c[4 * 3] = result3;
|
|
c[4 * 4] = result4;
|
|
c[4 * 5] = result5;
|
|
c[4 * 6] = result6;
|
|
c[4 * 7] = result7;
|
|
}
|
|
ie += 8;
|
|
a += 8;
|
|
}
|
|
if (eSize & 0x04) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
// a = blockA + diff;
|
|
a += diff;
|
|
const int8_t* w = B;
|
|
int8_t* blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
|
|
for (size_t ih = 0; ih < h; ih++) {
|
|
auto ihPack = ih >> 2;
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihPack * cStride + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
int32_t acc1 = initValue;
|
|
int32_t acc2 = initValue;
|
|
int32_t acc3 = initValue;
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t a2 = a[2];
|
|
const int8_t a3 = a[3];
|
|
const int8_t oneW = *w++;
|
|
// MNN_PRINT("4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%d, a value[0-3]:\n", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {4});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += int32_t(a0) * int32_t(oneW);
|
|
acc1 += int32_t(a1) * int32_t(oneW);
|
|
acc2 += int32_t(a2) * int32_t(oneW);
|
|
acc3 += int32_t(a3) * int32_t(oneW);
|
|
}
|
|
|
|
int8_t result0;
|
|
int8_t result1;
|
|
int8_t result2;
|
|
int8_t result3;
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
result1 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc1)), float(minValue))));
|
|
result2 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc2)), float(minValue))));
|
|
result3 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc3)), float(minValue))));
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
result1 = static_cast<int8_t>(std::max(std::min(maxValue, acc1), minValue));
|
|
result2 = static_cast<int8_t>(std::max(std::min(maxValue, acc2), minValue));
|
|
result3 = static_cast<int8_t>(std::max(std::min(maxValue, acc3), minValue));
|
|
}
|
|
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
c[4] = result1;
|
|
c[4 * 2] = result2;
|
|
c[4 * 3] = result3;
|
|
}
|
|
ie += 4;
|
|
a += 4;
|
|
}
|
|
if (eSize & 0x02) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
// a = blockA + diff;
|
|
a += diff;
|
|
const int8_t* w = B;
|
|
int8_t* blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
for (size_t ih = 0; ih < h; ih++) {
|
|
auto ihPack = ih >> 2;
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihPack * cStride + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
int32_t acc1 = initValue;
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t oneW = *w++;
|
|
// MNN_PRINT("2-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%d, a value[0-1]:\n", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {2});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += int32_t(a0) * int32_t(oneW);
|
|
acc1 += int32_t(a1) * int32_t(oneW);
|
|
}
|
|
|
|
int8_t result0;
|
|
int8_t result1;
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
result1 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc1)), float(minValue))));
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
result1 = static_cast<int8_t>(std::max(std::min(maxValue, acc1), minValue));
|
|
}
|
|
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
c[4] = result1;
|
|
}
|
|
ie += 2;
|
|
a += 2;
|
|
}
|
|
if (eSize & 0x01) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
// const float* a = blockA + diff;
|
|
a += diff;
|
|
const int8_t * w = B;
|
|
int8_t * blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
for (size_t ih = 0; ih < h; ih++) {
|
|
auto ihPack = ih >> 2;
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihPack * cStride + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t oneW = *w++;
|
|
|
|
// MNN_PRINT("1-loop: ie:%zu, a offset:%ld, c offset:%ld, w offset:%ld, w value:%d, a value[0]:\n", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {1});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += int32_t(a0) * int32_t(oneW);
|
|
}
|
|
int8_t result0;
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
}
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
}
|
|
ie += 1;
|
|
// a += 1;
|
|
}
|
|
|
|
}
|
|
|
|
void MNNPackedSparseQuantMatMulEpx4(int8_t* C, const int8_t* A, const int8_t* B, const size_t* sparseQuantParam, const QuanPostTreatParameters* post, unsigned int* NNZMap, int* dataOffsetMap) {
|
|
|
|
size_t eSize = sparseQuantParam[0];
|
|
size_t eP = sparseQuantParam[1];
|
|
size_t aStride = sparseQuantParam[2];
|
|
size_t l = sparseQuantParam[3];
|
|
size_t h = sparseQuantParam[4];
|
|
size_t cStride = sparseQuantParam[5];
|
|
|
|
const int32_t* bias = post->bias;
|
|
const float* scales = post->scale;
|
|
const int32_t maxValue = post->maxValue;
|
|
const int32_t minValue = post->minValue;
|
|
|
|
const int sparseBlockOC = 4;
|
|
const int8_t * a = A;
|
|
size_t ie = 0;
|
|
for (ie = 0; ie < eSize && eP <= eSize; ie += eP) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
a += diff;
|
|
const int8_t * w = B;
|
|
int8_t * blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
|
|
size_t ih = 0;
|
|
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
|
|
auto ihPack = ih >> 2;
|
|
auto c = blockC + ihPack * cStride;
|
|
|
|
int32_t initValue[4] = {0, 0, 0, 0};
|
|
if (nullptr != bias) {
|
|
memcpy(initValue, bias + ih, 4 * sizeof(int32_t));
|
|
}
|
|
int32_t acc0[4];
|
|
int32_t acc1[4];
|
|
int32_t acc2[4];
|
|
int32_t acc3[4];
|
|
int32_t acc4[4];
|
|
int32_t acc5[4];
|
|
int32_t acc6[4];
|
|
int32_t acc7[4];
|
|
int32_t acc8[4];
|
|
int32_t acc9[4];
|
|
int32_t acc10[4];
|
|
int32_t acc11[4];
|
|
int32_t acc12[4];
|
|
int32_t acc13[4];
|
|
int32_t acc14[4];
|
|
int32_t acc15[4];
|
|
|
|
memcpy(acc0, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc1, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc2, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc3, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc4, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc5, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc6, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc7, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc8, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc9, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc10, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc11, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc12, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc13, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc14, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc15, initValue, 4 * sizeof(int32_t));
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t a2 = a[2];
|
|
const int8_t a3 = a[3];
|
|
const int8_t a4 = a[4];
|
|
const int8_t a5 = a[5];
|
|
const int8_t a6 = a[6];
|
|
const int8_t a7 = a[7];
|
|
const int8_t a8 = a[8];
|
|
const int8_t a9 = a[9];
|
|
const int8_t a10 = a[10];
|
|
const int8_t a11 = a[11];
|
|
const int8_t a12 = a[12];
|
|
const int8_t a13 = a[13];
|
|
const int8_t a14 = a[14];
|
|
const int8_t a15 = a[15];
|
|
|
|
const int8_t wv[4] = {*w++, *w++, *w++, *w++};
|
|
|
|
// MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {16});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
acc0[lane] += (int32_t)a0 * (int32_t)wv[lane];
|
|
acc1[lane] += (int32_t)a1 * (int32_t)wv[lane];
|
|
acc2[lane] += (int32_t)a2 * (int32_t)wv[lane];
|
|
acc3[lane] += (int32_t)a3 * (int32_t)wv[lane];
|
|
acc4[lane] += (int32_t)a4 * (int32_t)wv[lane];
|
|
acc5[lane] += (int32_t)a5 * (int32_t)wv[lane];
|
|
acc6[lane] += (int32_t)a6 * (int32_t)wv[lane];
|
|
acc7[lane] += (int32_t)a7 * (int32_t)wv[lane];
|
|
acc8[lane] += (int32_t)a8 * (int32_t)wv[lane];
|
|
acc9[lane] += (int32_t)a9 * (int32_t)wv[lane];
|
|
acc10[lane] += (int32_t)a10 * (int32_t)wv[lane];
|
|
acc11[lane] += (int32_t)a11 * (int32_t)wv[lane];
|
|
acc12[lane] += (int32_t)a12 * (int32_t)wv[lane];
|
|
acc13[lane] += (int32_t)a13 * (int32_t)wv[lane];
|
|
acc14[lane] += (int32_t)a14 * (int32_t)wv[lane];
|
|
acc15[lane] += (int32_t)a15 * (int32_t)wv[lane];
|
|
}
|
|
}
|
|
|
|
int8_t result0[4];
|
|
int8_t result1[4];
|
|
int8_t result2[4];
|
|
int8_t result3[4];
|
|
int8_t result4[4];
|
|
int8_t result5[4];
|
|
int8_t result6[4];
|
|
int8_t result7[4];
|
|
int8_t result8[4];
|
|
int8_t result9[4];
|
|
int8_t result10[4];
|
|
int8_t result11[4];
|
|
int8_t result12[4];
|
|
int8_t result13[4];
|
|
int8_t result14[4];
|
|
int8_t result15[4];
|
|
|
|
if (scales) {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc0[lane])), float(minValue))));
|
|
result1[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc1[lane])), float(minValue))));
|
|
result2[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc2[lane])), float(minValue))));
|
|
result3[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc3[lane])), float(minValue))));
|
|
result4[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc4[lane])), float(minValue))));
|
|
result5[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc5[lane])), float(minValue))));
|
|
result6[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc6[lane])), float(minValue))));
|
|
result7[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc7[lane])), float(minValue))));
|
|
result8[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc8[lane])), float(minValue))));
|
|
result9[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc9[lane])), float(minValue))));
|
|
result10[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc10[lane])), float(minValue))));
|
|
result11[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc11[lane])), float(minValue))));
|
|
result12[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc12[lane])), float(minValue))));
|
|
result13[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc13[lane])), float(minValue))));
|
|
result14[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc14[lane])), float(minValue))));
|
|
result15[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc15[lane])), float(minValue))));
|
|
}
|
|
} else {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc0[lane]), minValue)));
|
|
result1[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc1[lane]), minValue)));
|
|
result2[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc2[lane]), minValue)));
|
|
result3[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc3[lane]), minValue)));
|
|
result4[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc4[lane]), minValue)));
|
|
result5[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc5[lane]), minValue)));
|
|
result6[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc6[lane]), minValue)));
|
|
result7[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc7[lane]), minValue)));
|
|
result8[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc8[lane]), minValue)));
|
|
result9[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc9[lane]), minValue)));
|
|
result10[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc10[lane]), minValue)));
|
|
result11[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc11[lane]), minValue)));
|
|
result12[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc12[lane]), minValue)));
|
|
result13[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc13[lane]), minValue)));
|
|
result14[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc14[lane]), minValue)));
|
|
result15[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc15[lane]), minValue)));
|
|
}
|
|
}
|
|
|
|
memcpy(c , result0, 4 * sizeof(int8_t)); // store continuous c
|
|
memcpy(c + 4 , result1, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 2 , result2, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 3 , result3, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 4 , result4, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 5 , result5, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 6 , result6, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 7 , result7, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 8 , result8, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 9 , result9, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 10, result10, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 11, result11, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 12, result12, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 13, result13, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 14, result14, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 15, result15, 4 * sizeof(int8_t));
|
|
}
|
|
|
|
blockC += (h >> 2) * cStride;
|
|
for (; ih < h; ih++) {
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
int32_t acc1 = initValue;
|
|
int32_t acc2 = initValue;
|
|
int32_t acc3 = initValue;
|
|
int32_t acc4 = initValue;
|
|
int32_t acc5 = initValue;
|
|
int32_t acc6 = initValue;
|
|
int32_t acc7 = initValue;
|
|
int32_t acc8 = initValue;
|
|
int32_t acc9 = initValue;
|
|
int32_t acc10 = initValue;
|
|
int32_t acc11 = initValue;
|
|
int32_t acc12 = initValue;
|
|
int32_t acc13 = initValue;
|
|
int32_t acc14 = initValue;
|
|
int32_t acc15 = initValue;
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t a2 = a[2];
|
|
const int8_t a3 = a[3];
|
|
const int8_t a4 = a[4];
|
|
const int8_t a5 = a[5];
|
|
const int8_t a6 = a[6];
|
|
const int8_t a7 = a[7];
|
|
const int8_t a8 = a[8];
|
|
const int8_t a9 = a[9];
|
|
const int8_t a10 = a[10];
|
|
const int8_t a11 = a[11];
|
|
const int8_t a12 = a[12];
|
|
const int8_t a13 = a[13];
|
|
const int8_t a14 = a[14];
|
|
const int8_t a15 = a[15];
|
|
|
|
const int8_t oneW = *w++;
|
|
|
|
// MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {16});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += (int32_t)a0 * (int32_t)oneW;
|
|
acc1 += (int32_t)a1 * (int32_t)oneW;
|
|
acc2 += (int32_t)a2 * (int32_t)oneW;
|
|
acc3 += (int32_t)a3 * (int32_t)oneW;
|
|
acc4 += (int32_t)a4 * (int32_t)oneW;
|
|
acc5 += (int32_t)a5 * (int32_t)oneW;
|
|
acc6 += (int32_t)a6 * (int32_t)oneW;
|
|
acc7 += (int32_t)a7 * (int32_t)oneW;
|
|
acc8 += (int32_t)a8 * (int32_t)oneW;
|
|
acc9 += (int32_t)a9 * (int32_t)oneW;
|
|
acc10 += (int32_t)a10 * (int32_t)oneW;
|
|
acc11 += (int32_t)a11 * (int32_t)oneW;
|
|
acc12 += (int32_t)a12 * (int32_t)oneW;
|
|
acc13 += (int32_t)a13 * (int32_t)oneW;
|
|
acc14 += (int32_t)a14 * (int32_t)oneW;
|
|
acc15 += (int32_t)a15 * (int32_t)oneW;
|
|
}
|
|
|
|
int8_t result0; // in assemmbly code, consider reuse acc0[0-8] bit
|
|
int8_t result1;
|
|
int8_t result2;
|
|
int8_t result3;
|
|
int8_t result4;
|
|
int8_t result5;
|
|
int8_t result6;
|
|
int8_t result7;
|
|
int8_t result8;
|
|
int8_t result9;
|
|
int8_t result10;
|
|
int8_t result11;
|
|
int8_t result12;
|
|
int8_t result13;
|
|
int8_t result14;
|
|
int8_t result15;
|
|
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
result1 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc1)), float(minValue))));
|
|
result2 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc2)), float(minValue))));
|
|
result3 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc3)), float(minValue))));
|
|
result4 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc4)), float(minValue))));
|
|
result5 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc5)), float(minValue))));
|
|
result6 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc6)), float(minValue))));
|
|
result7 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc7)), float(minValue))));
|
|
result8 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc8)), float(minValue))));
|
|
result9 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc9)), float(minValue))));
|
|
result10 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc10)), float(minValue))));
|
|
result11 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc11)), float(minValue))));
|
|
result12 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc12)), float(minValue))));
|
|
result13 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc13)), float(minValue))));
|
|
result14 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc14)), float(minValue))));
|
|
result15 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc15)), float(minValue))));
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
result1 = static_cast<int8_t>(std::max(std::min(maxValue, acc1), minValue));
|
|
result2 = static_cast<int8_t>(std::max(std::min(maxValue, acc2), minValue));
|
|
result3 = static_cast<int8_t>(std::max(std::min(maxValue, acc3), minValue));
|
|
result4 = static_cast<int8_t>(std::max(std::min(maxValue, acc4), minValue));
|
|
result5 = static_cast<int8_t>(std::max(std::min(maxValue, acc5), minValue));
|
|
result6 = static_cast<int8_t>(std::max(std::min(maxValue, acc6), minValue));
|
|
result7 = static_cast<int8_t>(std::max(std::min(maxValue, acc7), minValue));
|
|
result8 = static_cast<int8_t>(std::max(std::min(maxValue, acc8), minValue));
|
|
result9 = static_cast<int8_t>(std::max(std::min(maxValue, acc9), minValue));
|
|
result10 = static_cast<int8_t>(std::max(std::min(maxValue, acc10), minValue));
|
|
result11 = static_cast<int8_t>(std::max(std::min(maxValue, acc11), minValue));
|
|
result12 = static_cast<int8_t>(std::max(std::min(maxValue, acc12), minValue));
|
|
result13 = static_cast<int8_t>(std::max(std::min(maxValue, acc13), minValue));
|
|
result14 = static_cast<int8_t>(std::max(std::min(maxValue, acc14), minValue));
|
|
result15 = static_cast<int8_t>(std::max(std::min(maxValue, acc15), minValue));
|
|
}
|
|
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
c[4] = result1;
|
|
c[4 * 2] = result2;
|
|
c[4 * 3] = result3;
|
|
c[4 * 4] = result4;
|
|
c[4 * 5] = result5;
|
|
c[4 * 6] = result6;
|
|
c[4 * 7] = result7;
|
|
c[4 * 8] = result8;
|
|
c[4 * 9] = result9;
|
|
c[4 * 10] = result10;
|
|
c[4 * 11] = result11;
|
|
c[4 * 12] = result12;
|
|
c[4 * 13] = result13;
|
|
c[4 * 14] = result14;
|
|
c[4 * 15] = result15;
|
|
}
|
|
a += aStride;
|
|
}
|
|
if (eSize & 0x08) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
// a = blockA + diff;
|
|
a += diff;
|
|
const int8_t* w = B;
|
|
int8_t* blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
|
|
size_t ih = 0;
|
|
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
|
|
auto ihPack = ih >> 2;
|
|
auto c = blockC + ihPack * cStride;
|
|
int32_t initValue[4] = {0, 0, 0, 0};
|
|
if (nullptr != bias) {
|
|
memcpy(initValue, bias + ih, 4 * sizeof(int32_t));
|
|
}
|
|
int32_t acc0[4];
|
|
int32_t acc1[4];
|
|
int32_t acc2[4];
|
|
int32_t acc3[4];
|
|
int32_t acc4[4];
|
|
int32_t acc5[4];
|
|
int32_t acc6[4];
|
|
int32_t acc7[4];
|
|
|
|
memcpy(acc0, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc1, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc2, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc3, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc4, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc5, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc6, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc7, initValue, 4 * sizeof(int32_t));
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t a2 = a[2];
|
|
const int8_t a3 = a[3];
|
|
const int8_t a4 = a[4];
|
|
const int8_t a5 = a[5];
|
|
const int8_t a6 = a[6];
|
|
const int8_t a7 = a[7];
|
|
const int8_t wv[4] = {*w++, *w++, *w++, *w++};
|
|
// MNN_PRINT("8-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value[0-3]:, a value[0-7]:\n", ie, a - A, w - B - 1, c - C);
|
|
// formatMatrix(wv, {4});
|
|
// formatMatrix(a, {8});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
acc0[lane] += int32_t(a0) * int32_t(wv[lane]);
|
|
acc1[lane] += int32_t(a1) * int32_t(wv[lane]);
|
|
acc2[lane] += int32_t(a2) * int32_t(wv[lane]);
|
|
acc3[lane] += int32_t(a3) * int32_t(wv[lane]);
|
|
acc4[lane] += int32_t(a4) * int32_t(wv[lane]);
|
|
acc5[lane] += int32_t(a5) * int32_t(wv[lane]);
|
|
acc6[lane] += int32_t(a6) * int32_t(wv[lane]);
|
|
acc7[lane] += int32_t(a7) * int32_t(wv[lane]);
|
|
}
|
|
}
|
|
|
|
int8_t result0[4];
|
|
int8_t result1[4];
|
|
int8_t result2[4];
|
|
int8_t result3[4];
|
|
int8_t result4[4];
|
|
int8_t result5[4];
|
|
int8_t result6[4];
|
|
int8_t result7[4];
|
|
|
|
if (scales) {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc0[lane])), float(minValue))));
|
|
result1[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc1[lane])), float(minValue))));
|
|
result2[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc2[lane])), float(minValue))));
|
|
result3[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc3[lane])), float(minValue))));
|
|
result4[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc4[lane])), float(minValue))));
|
|
result5[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc5[lane])), float(minValue))));
|
|
result6[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc6[lane])), float(minValue))));
|
|
result7[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc7[lane])), float(minValue))));
|
|
}
|
|
} else {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc0[lane]), minValue)));
|
|
result1[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc1[lane]), minValue)));
|
|
result2[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc2[lane]), minValue)));
|
|
result3[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc3[lane]), minValue)));
|
|
result4[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc4[lane]), minValue)));
|
|
result5[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc5[lane]), minValue)));
|
|
result6[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc6[lane]), minValue)));
|
|
result7[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc7[lane]), minValue)));
|
|
}
|
|
}
|
|
|
|
memcpy(c , result0, 4 * sizeof(int8_t)); // store continuous c
|
|
memcpy(c + 4 , result1, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 2 , result2, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 3 , result3, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 4 , result4, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 5 , result5, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 6 , result6, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 7 , result7, 4 * sizeof(int8_t));
|
|
|
|
}
|
|
blockC += (ih >> 2) * cStride;
|
|
for (; ih < h; ih++) {
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
int32_t acc1 = initValue;
|
|
int32_t acc2 = initValue;
|
|
int32_t acc3 = initValue;
|
|
int32_t acc4 = initValue;
|
|
int32_t acc5 = initValue;
|
|
int32_t acc6 = initValue;
|
|
int32_t acc7 = initValue;
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t a2 = a[2];
|
|
const int8_t a3 = a[3];
|
|
const int8_t a4 = a[4];
|
|
const int8_t a5 = a[5];
|
|
const int8_t a6 = a[6];
|
|
const int8_t a7 = a[7];
|
|
const int8_t oneW = *w++;
|
|
// MNN_PRINT("8-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%d, a value[0-7]:\n", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {8});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += int32_t(a0) * int32_t(oneW);
|
|
acc1 += int32_t(a1) * int32_t(oneW);
|
|
acc2 += int32_t(a2) * int32_t(oneW);
|
|
acc3 += int32_t(a3) * int32_t(oneW);
|
|
acc4 += int32_t(a4) * int32_t(oneW);
|
|
acc5 += int32_t(a5) * int32_t(oneW);
|
|
acc6 += int32_t(a6) * int32_t(oneW);
|
|
acc7 += int32_t(a7) * int32_t(oneW);
|
|
}
|
|
|
|
int8_t result0;
|
|
int8_t result1;
|
|
int8_t result2;
|
|
int8_t result3;
|
|
int8_t result4;
|
|
int8_t result5;
|
|
int8_t result6;
|
|
int8_t result7;
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
result1 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc1)), float(minValue))));
|
|
result2 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc2)), float(minValue))));
|
|
result3 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc3)), float(minValue))));
|
|
result4 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc4)), float(minValue))));
|
|
result5 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc5)), float(minValue))));
|
|
result6 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc6)), float(minValue))));
|
|
result7 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc7)), float(minValue))));
|
|
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
result1 = static_cast<int8_t>(std::max(std::min(maxValue, acc1), minValue));
|
|
result2 = static_cast<int8_t>(std::max(std::min(maxValue, acc2), minValue));
|
|
result3 = static_cast<int8_t>(std::max(std::min(maxValue, acc3), minValue));
|
|
result4 = static_cast<int8_t>(std::max(std::min(maxValue, acc4), minValue));
|
|
result5 = static_cast<int8_t>(std::max(std::min(maxValue, acc5), minValue));
|
|
result6 = static_cast<int8_t>(std::max(std::min(maxValue, acc6), minValue));
|
|
result7 = static_cast<int8_t>(std::max(std::min(maxValue, acc7), minValue));
|
|
}
|
|
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
c[4] = result1;
|
|
c[4 * 2] = result2;
|
|
c[4 * 3] = result3;
|
|
c[4 * 4] = result4;
|
|
c[4 * 5] = result5;
|
|
c[4 * 6] = result6;
|
|
c[4 * 7] = result7;
|
|
}
|
|
ie += 8;
|
|
a += 8;
|
|
}
|
|
if (eSize & 0x04) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
// a = blockA + diff;
|
|
a += diff;
|
|
const int8_t* w = B;
|
|
int8_t* blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
|
|
size_t ih = 0;
|
|
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
|
|
auto ihPack = ih >> 2;
|
|
auto c = blockC + ihPack * cStride;
|
|
int32_t initValue[4] = {0, 0, 0, 0};
|
|
if (nullptr != bias) {
|
|
memcpy(initValue, bias + ih, 4 * sizeof(int32_t));
|
|
}
|
|
int32_t acc0[4];
|
|
int32_t acc1[4];
|
|
int32_t acc2[4];
|
|
int32_t acc3[4];
|
|
|
|
memcpy(acc0, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc1, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc2, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc3, initValue, 4 * sizeof(int32_t));
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t a2 = a[2];
|
|
const int8_t a3 = a[3];
|
|
const int8_t wv[4] = {*w++, *w++, *w++, *w++};
|
|
// MNN_PRINT("4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:, a value[0-3]:\n", ie, a - A, w - B - 1, c - C);
|
|
// formatMatrix(wv, {4});
|
|
// formatMatrix(a, {4});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
acc0[lane] += int32_t(a0) * int32_t(wv[lane]);
|
|
acc1[lane] += int32_t(a1) * int32_t(wv[lane]);
|
|
acc2[lane] += int32_t(a2) * int32_t(wv[lane]);
|
|
acc3[lane] += int32_t(a3) * int32_t(wv[lane]);
|
|
}
|
|
}
|
|
|
|
int8_t result0[4];
|
|
int8_t result1[4];
|
|
int8_t result2[4];
|
|
int8_t result3[4];
|
|
|
|
if (scales) {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc0[lane])), float(minValue))));
|
|
result1[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc1[lane])), float(minValue))));
|
|
result2[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc2[lane])), float(minValue))));
|
|
result3[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc3[lane])), float(minValue))));
|
|
}
|
|
} else {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc0[lane]), minValue)));
|
|
result1[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc1[lane]), minValue)));
|
|
result2[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc2[lane]), minValue)));
|
|
result3[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc3[lane]), minValue)));
|
|
}
|
|
}
|
|
|
|
memcpy(c , result0, 4 * sizeof(int8_t)); // store continuous c
|
|
memcpy(c + 4 , result1, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 2 , result2, 4 * sizeof(int8_t));
|
|
memcpy(c + 4 * 3 , result3, 4 * sizeof(int8_t));
|
|
|
|
}
|
|
blockC += (ih >> 2) * cStride;
|
|
for (; ih < h; ih++) {
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
int32_t acc1 = initValue;
|
|
int32_t acc2 = initValue;
|
|
int32_t acc3 = initValue;
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t a2 = a[2];
|
|
const int8_t a3 = a[3];
|
|
const int8_t oneW = *w++;
|
|
// MNN_PRINT("4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%d, a value[0-3]:\n", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {4});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += int32_t(a0) * int32_t(oneW);
|
|
acc1 += int32_t(a1) * int32_t(oneW);
|
|
acc2 += int32_t(a2) * int32_t(oneW);
|
|
acc3 += int32_t(a3) * int32_t(oneW);
|
|
}
|
|
|
|
int8_t result0;
|
|
int8_t result1;
|
|
int8_t result2;
|
|
int8_t result3;
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
result1 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc1)), float(minValue))));
|
|
result2 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc2)), float(minValue))));
|
|
result3 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc3)), float(minValue))));
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
result1 = static_cast<int8_t>(std::max(std::min(maxValue, acc1), minValue));
|
|
result2 = static_cast<int8_t>(std::max(std::min(maxValue, acc2), minValue));
|
|
result3 = static_cast<int8_t>(std::max(std::min(maxValue, acc3), minValue));
|
|
}
|
|
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
c[4] = result1;
|
|
c[4 * 2] = result2;
|
|
c[4 * 3] = result3;
|
|
}
|
|
ie += 4;
|
|
a += 4;
|
|
}
|
|
if (eSize & 0x02) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
// a = blockA + diff;
|
|
a += diff;
|
|
const int8_t* w = B;
|
|
int8_t* blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
|
|
size_t ih = 0;
|
|
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
|
|
auto ihPack = ih >> 2;
|
|
auto c = blockC + ihPack * cStride;
|
|
int32_t initValue[4] = {0, 0, 0, 0};
|
|
if (nullptr != bias) {
|
|
memcpy(initValue, bias + ih, 4 * sizeof(int32_t));
|
|
}
|
|
int32_t acc0[4];
|
|
int32_t acc1[4];
|
|
memcpy(acc0, initValue, 4 * sizeof(int32_t));
|
|
memcpy(acc1, initValue, 4 * sizeof(int32_t));
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t wv[4] = {*w++, *w++, *w++, *w++};
|
|
// MNN_PRINT("2-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:, a value[0-1]:\n", ie, a - A, w - B - 1, c - C);
|
|
// formatMatrix(wv, {4});
|
|
// formatMatrix(a, {2});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
acc0[lane] += int32_t(a0) * int32_t(wv[lane]);
|
|
acc1[lane] += int32_t(a1) * int32_t(wv[lane]);
|
|
}
|
|
}
|
|
|
|
int8_t result0[4];
|
|
int8_t result1[4];
|
|
if (scales) {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc0[lane])), float(minValue))));
|
|
result1[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc1[lane])), float(minValue))));
|
|
}
|
|
} else {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc0[lane]), minValue)));
|
|
result1[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc1[lane]), minValue)));
|
|
}
|
|
}
|
|
|
|
memcpy(c , result0, 4 * sizeof(int8_t)); // store continuous c
|
|
memcpy(c + 4 , result1, 4 * sizeof(int8_t));
|
|
}
|
|
blockC += (ih >> 2) * cStride;
|
|
for (; ih < h; ih++) {
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
int32_t acc1 = initValue;
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t a1 = a[1];
|
|
const int8_t oneW = *w++;
|
|
// MNN_PRINT("2-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%d, a value[0-1]:\n", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {2});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += int32_t(a0) * int32_t(oneW);
|
|
acc1 += int32_t(a1) * int32_t(oneW);
|
|
}
|
|
|
|
int8_t result0;
|
|
int8_t result1;
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
result1 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc1)), float(minValue))));
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
result1 = static_cast<int8_t>(std::max(std::min(maxValue, acc1), minValue));
|
|
}
|
|
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
c[4] = result1;
|
|
}
|
|
ie += 2;
|
|
a += 2;
|
|
}
|
|
if (eSize & 0x01) {
|
|
const int* dataOffset = dataOffsetMap;
|
|
const int diff = *dataOffset++;
|
|
// const float* a = blockA + diff;
|
|
a += diff;
|
|
const int8_t * w = B;
|
|
int8_t * blockC = C + (ie << 2);
|
|
const unsigned int* nnz = NNZMap;
|
|
|
|
size_t ih = 0;
|
|
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
|
|
auto ihPack = ih >> 2;
|
|
auto c = blockC + ihPack * cStride;
|
|
int32_t initValue[4] = {0, 0, 0, 0};
|
|
if (nullptr != bias) {
|
|
memcpy(initValue, bias + ih, 4 * sizeof(int32_t));
|
|
}
|
|
int32_t acc0[4];
|
|
memcpy(acc0, initValue, 4 * sizeof(int32_t));
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t wv[4] = {*w++, *w++, *w++, *w++};
|
|
// MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:, a value[0-1]:\n", ie, a - A, w - B - 1, c - C);
|
|
// formatMatrix(wv, {4});
|
|
// formatMatrix(a, {16});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
acc0[lane] += int32_t(a0) * int32_t(wv[lane]);
|
|
}
|
|
}
|
|
|
|
int8_t result0[4];
|
|
if (scales) {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih + lane] * float(acc0[lane])), float(minValue))));
|
|
}
|
|
} else {
|
|
for (int lane = 0; lane < 4; lane++) {
|
|
result0[lane] = static_cast<int8_t>(roundf(std::max(std::min(maxValue, acc0[lane]), minValue)));
|
|
}
|
|
}
|
|
memcpy(c, result0, 4 * sizeof(int8_t)); // store continuous c
|
|
}
|
|
blockC += (ih >> 2) * cStride;
|
|
for (; ih < h; ih++) {
|
|
auto ihSubIndex = ih & 0x03;
|
|
auto c = blockC + ihSubIndex;
|
|
const int32_t initValue = nullptr != bias ? bias[ih] : 0;
|
|
int32_t acc0 = initValue;
|
|
|
|
const int lElement = *nnz++;
|
|
for (auto il = 0; il < lElement; il++) {
|
|
const int diff = *dataOffset++;
|
|
const int8_t a0 = a[0];
|
|
const int8_t oneW = *w++;
|
|
|
|
// MNN_PRINT("1-loop: ie:%zu, a offset:%ld, c offset:%ld, w offset:%ld, w value:%d, a value[0]:\n", ie, a - A, w - B - 1, c - C, oneW);
|
|
// formatMatrix(a, {1});
|
|
// MNN_PRINT("\n");
|
|
a = a + diff;
|
|
acc0 += int32_t(a0) * int32_t(oneW);
|
|
}
|
|
int8_t result0;
|
|
if (scales) {
|
|
result0 = static_cast<int8_t>(roundf(std::max(std::min(float(maxValue), scales[ih] * float(acc0)), float(minValue))));
|
|
} else {
|
|
result0 = static_cast<int8_t>(std::max(std::min(maxValue, acc0), minValue));
|
|
}
|
|
// how to store faster: st4 / transpose /
|
|
c[0] = result0;
|
|
}
|
|
ie += 1;
|
|
// a += 1;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static int8_t MNNInt32ToInt8(int data, int bias, float scale, float maxValue, float minValue)
|
|
{
|
|
float value = (float)(data + bias) * scale;
|
|
value = ALIMAX(value, minValue);
|
|
value = ALIMIN(value, maxValue);
|
|
return static_cast<int8_t>(roundf(value));
|
|
}
|
|
|
|
static void MNNGemmInt8AddBiasScale_16x4_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step,
|
|
size_t dst_depth_quad, const QuanPostTreatParameters* post, size_t realCount) {
|
|
const int bytes = ((post->useInt8 == 1) ? 1 : 4);
|
|
float fp32min = 0, fp32max = 0;
|
|
int weight_step_Z = src_depth_quad * (GEMM_INT8_UNIT * GEMM_INT8_SRC_UNIT) + 4 * 2 * GEMM_INT8_UNIT;
|
|
int weight_step_Y = (GEMM_INT8_UNIT * GEMM_INT8_SRC_UNIT);
|
|
|
|
if (0 == post->useInt8 && post->fp32minmax) {
|
|
fp32min = (post->fp32minmax)[0];
|
|
fp32max = (post->fp32minmax)[1];
|
|
}
|
|
|
|
float* biasPtr = (float*)post->biasFloat;
|
|
auto accumbuff = post->accumBuffer;
|
|
auto blockNum = post->blockNum;
|
|
|
|
for (int dz = 0; dz < dst_depth_quad; ++dz) {
|
|
auto dst_z = dst + dz * dst_step;
|
|
auto accum_z = accumbuff;
|
|
for (int bk = 0; bk < blockNum; ++bk) {
|
|
// block's weight&scale&bias
|
|
const auto weight_dz = weight + dz * blockNum * weight_step_Z + bk * weight_step_Z;
|
|
const float* scale_dz = reinterpret_cast<const float*>(weight_dz + src_depth_quad * weight_step_Y);
|
|
const auto weightBias_dz = scale_dz + GEMM_INT8_UNIT;
|
|
const auto bias_dz = biasPtr + dz * GEMM_INT8_UNIT;
|
|
|
|
const auto srcSumPtr = post->srcKernelSum + bk * realCount;
|
|
|
|
for (int w = 0; w < realCount; ++w) {
|
|
const auto src_x = src + bk * src_depth_quad * GEMM_INT8_SRC_UNIT * realCount + w * GEMM_INT8_SRC_UNIT;
|
|
auto dst_x = dst_z + w * GEMM_INT8_UNIT * bytes;
|
|
auto accum_x = accum_z + w * GEMM_INT8_UNIT;
|
|
int32_t dstTemp[4] = {0, 0, 0, 0};
|
|
|
|
for (int sz = 0; sz < src_depth_quad; ++sz) {
|
|
const auto weight_sz = weight_dz + weight_step_Y * sz;
|
|
const auto src_z = src_x + sz * realCount * GEMM_INT8_SRC_UNIT;
|
|
|
|
for (int j = 0; j < GEMM_INT8_UNIT; ++j) {
|
|
const auto weight_j = weight_sz + j * GEMM_INT8_SRC_UNIT;
|
|
for (int i = 0; i < GEMM_INT8_SRC_UNIT; ++i) {
|
|
dstTemp[j] += (int32_t)src_z[i] * (int32_t)weight_j[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < GEMM_INT8_UNIT; ++j) {
|
|
float value = dstTemp[j] * scale_dz[j] + srcSumPtr[w] * weightBias_dz[j];
|
|
if (post->inputScale) {
|
|
value = dstTemp[j] * scale_dz[j] * (post->inputScale + bk * realCount)[w] + srcSumPtr[w] * weightBias_dz[j];
|
|
}
|
|
if (post->inputBias) {
|
|
auto weightKernelSum = post->weightKernelSum + dz * (blockNum * GEMM_INT8_UNIT) + bk * GEMM_INT8_UNIT;
|
|
value += ((post->inputBias + bk * realCount)[w] * weightKernelSum[j]);
|
|
}
|
|
if (post->useInt8 == 0) {
|
|
if (bk > 0) {
|
|
float dstv = ((float*)accum_x)[j];
|
|
value += dstv;
|
|
}
|
|
if (bk == blockNum - 1) {
|
|
if (biasPtr) {
|
|
value += bias_dz[j];
|
|
}
|
|
if (post->fp32minmax) {
|
|
value = std::min(std::max(fp32min, value), fp32max);
|
|
}
|
|
((float*)dst_x)[j] = value;
|
|
} else {
|
|
((float*)accum_x)[j] = value;
|
|
}
|
|
|
|
} else {
|
|
value += bias_dz[j];
|
|
value = ALIMAX(value, post->minValue);
|
|
value = ALIMIN(value, post->maxValue);
|
|
dst_x[j] = static_cast<int8_t>(roundf(value));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void MNNGemmInt8AddBiasScale_16x4_w4_Unit(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad, const QuanPostTreatParameters* post, size_t realCount) {
|
|
uint32_t c = 0xf;
|
|
const int bytes = 4;
|
|
float fp32min = 0, fp32max = 0;
|
|
int weight_step_Y = 0.5 * (GEMM_INT8_UNIT * GEMM_INT8_SRC_UNIT);
|
|
int weight_step_Z = weight_step_Y * src_depth_quad + 4 * 2 * GEMM_INT8_UNIT;
|
|
MNN_ASSERT(post->useInt8==0);
|
|
if (post->fp32minmax) {
|
|
fp32min = (post->fp32minmax)[0];
|
|
fp32max = (post->fp32minmax)[1];
|
|
}
|
|
|
|
float* biasPtr = (float*)post->biasFloat;
|
|
auto accumbuff = post->accumBuffer;
|
|
auto blockNum = post->blockNum;
|
|
|
|
for (int dz = 0; dz < dst_depth_quad; ++dz) {
|
|
auto dst_z = dst + dz * dst_step;
|
|
auto accum_z = accumbuff;
|
|
for (int bk = 0; bk < blockNum; ++bk) {
|
|
const auto weight_dz = weight + dz * blockNum * weight_step_Z + bk * weight_step_Z;
|
|
const float* scale_dz = reinterpret_cast<const float*>(weight_dz + src_depth_quad * weight_step_Y);
|
|
const auto weightBias_dz = scale_dz + GEMM_INT8_UNIT;
|
|
const auto bias_dz = biasPtr + dz * GEMM_INT8_UNIT;
|
|
const auto srcSumPtr = post->srcKernelSum + bk * realCount;
|
|
for (int w = 0; w < realCount; ++w) {
|
|
const auto src_x = src + w * GEMM_INT8_SRC_UNIT;
|
|
auto dst_x = dst_z + w * GEMM_INT8_UNIT * bytes;
|
|
auto accum_x = accum_z + w * GEMM_INT8_UNIT;
|
|
int32_t dstTemp[4] = {0, 0, 0, 0};
|
|
|
|
for (int sz = 0; sz < src_depth_quad; ++sz) {
|
|
const auto weight_sz = (uint8_t*)weight_dz + weight_step_Y * sz;
|
|
const auto src_z = src_x + sz * realCount * GEMM_INT8_SRC_UNIT;
|
|
|
|
int w8[64]; // 64=GEMM_INT8_UNIT * GEMM_INT8_SRC_UNIT
|
|
for (int k = 0; k < 32; ++k) {
|
|
w8[k] = (weight_sz[k]>>4);
|
|
w8[k + 32] = (weight_sz[k] & c);
|
|
}
|
|
|
|
for (int j = 0; j < GEMM_INT8_UNIT; ++j) {
|
|
const auto weight_j = w8 + j * GEMM_INT8_SRC_UNIT;
|
|
for (int i = 0; i < GEMM_INT8_SRC_UNIT; ++i) {
|
|
dstTemp[j] += (int32_t)src_z[i] * (int32_t)weight_j[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < GEMM_INT8_UNIT; ++j) {
|
|
float value = dstTemp[j] * scale_dz[j] + srcSumPtr[w] * weightBias_dz[j];
|
|
if (post->inputScale) {
|
|
value = dstTemp[j] * scale_dz[j] * (post->inputScale + bk * realCount)[w] + srcSumPtr[w] * weightBias_dz[j];
|
|
}
|
|
if (post->inputBias) {
|
|
auto weightKernelSum = post->weightKernelSum + dz * (blockNum * GEMM_INT8_UNIT) + bk * GEMM_INT8_UNIT;
|
|
value += ((post->inputBias + bk * realCount)[w] * weightKernelSum[j]);
|
|
}
|
|
|
|
if (bk > 0) {
|
|
float dstv = ((float*)accum_x)[j];
|
|
value += dstv;
|
|
}
|
|
if (bk == blockNum - 1) {
|
|
if (biasPtr) {
|
|
value += bias_dz[j];
|
|
}
|
|
if (post->fp32minmax) {
|
|
value = std::min(std::max(fp32min, value), fp32max);
|
|
}
|
|
((float*)dst_x)[j] = value;
|
|
} else {
|
|
((float*)accum_x)[j] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void MNNReluWithSlopeChannelInt8(int8_t* dst, const int8_t* src, const float* slope, size_t planeNumber, size_t depthQuad, const QuanPrePostParameters *params, size_t pack) {
|
|
#ifdef MNN_USE_SSE
|
|
float offset = 128.f;
|
|
uint8_t* srcPtr = (uint8_t*)src;
|
|
uint8_t* dstPtr = (uint8_t*)dst;
|
|
#else
|
|
float offset = 0.f;
|
|
const int8_t* srcPtr = src;
|
|
int8_t* dstPtr = dst;
|
|
#endif
|
|
float mulVal = 0.f;
|
|
float inputZero = static_cast<float>(params->inputZeroPoint[0]) + offset;
|
|
float outputZero = static_cast<float>(params->outputZeroPoint[0]) + offset;
|
|
int32_t minval = params->minValue + offset;
|
|
int32_t maxval = params->maxValue + offset;
|
|
for (int j = 0;j < depthQuad; ++j) {
|
|
const float* slopeZ = slope + pack * j;
|
|
const auto srcZ = srcPtr + pack * j * planeNumber;
|
|
auto dstZ = dstPtr + pack * j * planeNumber;
|
|
for (int i = 0; i < planeNumber; ++i) {
|
|
for (int c = 0; c < pack; ++c) {
|
|
float valInput = (static_cast<float>(srcZ[pack * i + c]) - inputZero) * params->inputScale[0];
|
|
if (valInput < 0) {
|
|
valInput *= slopeZ[c];
|
|
}
|
|
auto mulVal = valInput * params->outputScale[0] + outputZero;
|
|
dstZ[pack * i + c] = ALIMIN(ALIMAX(static_cast<int32_t>(roundf(mulVal)), minval), maxval);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void MNNGemmInt8AddBiasScale_16x4_Unit_FAST(int8_t* dst, const int8_t* src, const int8_t* weight, size_t src_depth_quad, size_t dst_step, size_t dst_depth_quad, const QuanPostTreatParameters* post, size_t realCount) {
|
|
return MNNGemmInt8AddBiasScale_16x4_Unit(dst, src, weight, src_depth_quad, dst_step, dst_depth_quad, post, realCount);
|
|
}
|
|
|
|
static void MNNLineDepthWiseInt8AddBiasScaleUnit(int8_t* dst, const int8_t* src, const int8_t* weight, const QuanPostTreatParameters* parameters,
|
|
size_t width, size_t src_w_step, size_t fw, size_t fh, size_t dilateX_step,
|
|
size_t dilateY_step, int8_t* idxOrder) {
|
|
#ifdef MNN_USE_SSE
|
|
int offset = 128;
|
|
uint8_t* dstPtr = (uint8_t*)dst;
|
|
const int16_t* srcPtr = (int16_t*)src;
|
|
const int16_t* weightPtr = (int16_t*)weight;
|
|
#else
|
|
int offset = 0;
|
|
int8_t* dstPtr = dst;
|
|
const int8_t* srcPtr = src;
|
|
const int8_t* weightPtr = weight;
|
|
#endif
|
|
int pack = 16;
|
|
auto bias_z = parameters->bias;
|
|
auto scale_z = parameters->scale;
|
|
int dx, fx, fy;
|
|
for (dx = 0; dx < width; ++dx) {
|
|
auto dst_x = dstPtr + dx * pack;
|
|
int32_t dstInt32[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
const auto src_z = srcPtr + src_w_step * dx;
|
|
for (fy = 0; fy < fh; ++fy) {
|
|
const auto src_y = src_z + fy * dilateY_step;
|
|
const auto weight_y = weightPtr + fy * fw * pack;
|
|
for (fx = 0; fx < fw; ++fx) {
|
|
const auto src_x = src_y + fx * dilateX_step;
|
|
const auto weight_x = weight_y + pack * fx;
|
|
for (int j = 0; j < pack; ++j) {
|
|
dstInt32[j] += static_cast<int32_t>(src_x[j]) * static_cast<int32_t>(weight_x[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < pack; ++i) {
|
|
|
|
float val = (dstInt32[i] + bias_z[i]) * scale_z[i];
|
|
int valOut = roundf(val) + offset;
|
|
if (valOut > parameters->maxValue + offset) {
|
|
valOut = parameters->maxValue + offset;
|
|
}
|
|
if (valOut < parameters->minValue + offset) {
|
|
valOut = parameters->minValue + offset;
|
|
}
|
|
dst_x[i] = static_cast<int>(valOut);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void MNNLineDepthWiseInt8AddBiasScaleUnit3x3(int8_t* dst, const int8_t* src, const int8_t* weight, const QuanPostTreatParameters* parameters,
|
|
size_t width, size_t src_w_step, size_t fw, size_t fh, size_t dilateX_step, size_t dilateY_step, int8_t* idxOrder) {
|
|
MNNLineDepthWiseInt8AddBiasScaleUnit(dst, src, weight, parameters, width, src_w_step, fw, fh, dilateX_step, dilateY_step, idxOrder);
|
|
}
|
|
#endif
|
|
|
|
#ifndef MNN_USE_NEON
|
|
void MNNFloat2Int8(const float* src, int8_t* dst, size_t sizeQuad, const float* scalep, ssize_t minValue,
|
|
ssize_t maxValue, const float* zeroPoint, ssize_t quanParamVec) {
|
|
// quanParamVec:
|
|
// 00: scale is vector
|
|
// 10: zero is vector
|
|
// 11: both are vector
|
|
float scale4[4] = {scalep[0], scalep[0], scalep[0], scalep[0] };
|
|
float zero4[4] = {zeroPoint[0], zeroPoint[0], zeroPoint[0], zeroPoint[0]};
|
|
if (quanParamVec % 2 == 1) {
|
|
scale4[0] = scalep[0];
|
|
scale4[1] = scalep[1];
|
|
scale4[2] = scalep[2];
|
|
scale4[3] = scalep[3];
|
|
}
|
|
if (quanParamVec >> 1 == 1) {
|
|
zero4[0] = zeroPoint[0];
|
|
zero4[1] = zeroPoint[1];
|
|
zero4[2] = zeroPoint[2];
|
|
zero4[3] = zeroPoint[3];
|
|
}
|
|
for (int i = 0; i < sizeQuad; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
int v = (int)roundf(src[4*i+j] * scale4[j]) + zero4[j];
|
|
if (v > maxValue) {
|
|
v = maxValue;
|
|
}
|
|
if (v < minValue) {
|
|
v = minValue;
|
|
}
|
|
dst[4*i+j] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MNNInt8ScaleToFloat(float* dst, const int8_t* src, const float* scale, size_t size, const float* zeroPoint, ssize_t quantParamVec) {
|
|
float scale_[4] = {scale[0], scale[0], scale[0], scale[0]};
|
|
float zero_[4] = {zeroPoint[0], zeroPoint[0], zeroPoint[0], zeroPoint[0]};
|
|
if (quantParamVec & 1) {
|
|
::memcpy(scale_, scale, 4 * sizeof(float));
|
|
}
|
|
if (quantParamVec >> 1) {
|
|
::memcpy(zero_, zeroPoint, 4 * sizeof(float));
|
|
}
|
|
for (int i = 0; i < size; ++i) {
|
|
const auto srcStart = src + i * 4;
|
|
auto dstStart = dst + i * 4;
|
|
for (int j = 0; j < 4; ++j) {
|
|
dstStart[j] = static_cast<float>(srcStart[j] - zero_[j]) * scale_[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void MNNAvgPoolInt8(int8_t* dst, int8_t* src, size_t outputWidth, size_t inputWidth, size_t kernelx, size_t kernely, size_t stridesx, ssize_t paddingx, ssize_t factor) {
|
|
int pack = 16;
|
|
int8_t* dstPtr = dst;
|
|
const int8_t* srcPtr = src;
|
|
for (int ox = 0; ox < outputWidth; ++ox) {
|
|
std::vector<int> sum_(pack, 0);
|
|
for (int y = 0; y < kernely; ++y) {
|
|
for (int x = 0; x < kernelx; ++x) {
|
|
const int8_t *inputPtr = srcPtr + pack* (x + inputWidth* y);
|
|
for (int idx = 0; idx < pack; ++idx) {
|
|
sum_[idx] += *(inputPtr + idx);
|
|
}
|
|
}
|
|
}
|
|
for (int idx = 0; idx < pack; ++idx) {
|
|
*(dstPtr + idx) = static_cast<int8_t>((sum_[idx] * factor)>>24);
|
|
}
|
|
dstPtr = dstPtr + pack;
|
|
srcPtr = srcPtr + pack* stridesx;
|
|
}
|
|
}
|
|
|
|
void MNNMaxPoolInt8(int8_t* dst, int8_t* src, size_t outputWidth, size_t inputWidth, size_t kernelx, size_t kernely, size_t stridesx) {
|
|
int pack = 16;
|
|
int8_t* dstPtr = dst;
|
|
const int8_t* srcPtr = src;
|
|
for (int ox = 0; ox < outputWidth; ++ox){
|
|
std::vector<int8_t> results(pack, INT8_MIN);
|
|
for (int y = 0; y < kernely; ++y) {
|
|
for (int x = 0; x < kernelx; ++x) {
|
|
const int8_t* inputPtr = srcPtr + pack* (x + inputWidth* y);
|
|
for (int idx = 0; idx < pack; ++idx) {
|
|
results[idx] = std::max(results[idx], *(inputPtr + idx));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int idx = 0; idx < pack;++idx) {
|
|
*(dstPtr + idx) = results[idx];
|
|
}
|
|
dstPtr = dstPtr + pack;
|
|
srcPtr = srcPtr + pack* stridesx;
|
|
}
|
|
}
|
|
|
|
void MNNBinaryAddInt8 (int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* inputRaw1, ssize_t* inputScalesInt32, float* inputScalesFp32, const QuanPrePostParameters* params, size_t elementSize, size_t needBroadcast) {
|
|
float sum = 0;
|
|
#ifdef MNN_USE_SSE
|
|
const int offset = 128;
|
|
const uint8_t* inputData0 = (uint8_t*)inputRaw0;
|
|
const uint8_t* inputData1 = (uint8_t*)inputRaw1;
|
|
uint8_t* outputData = (uint8_t*)outputRaw;
|
|
#else
|
|
const int offset = 0;
|
|
const int8_t* inputData0 = inputRaw0;
|
|
const int8_t* inputData1 = inputRaw1;
|
|
int8_t* outputData = outputRaw;
|
|
#endif
|
|
const int maxValue = static_cast<int32_t>(params->maxValue) + offset;
|
|
const int minValue = static_cast<int32_t>(params->minValue) + offset;
|
|
for (int i = 0; i < elementSize; ++i) {
|
|
if (needBroadcast == 0) {
|
|
float inp0 = static_cast<int32_t>(inputData0[0] - offset - (int32_t)params->inputZeroPoint[0]) * static_cast<float>(inputScalesFp32[0]);
|
|
float inp1 = static_cast<int32_t>(inputData1[i] - offset - (int32_t)params->inputZeroPoint[1]) * static_cast<float>(inputScalesFp32[1]);
|
|
sum = inp0 + inp1;
|
|
} else if (needBroadcast == 1) {
|
|
float inp0 = static_cast<int32_t>(inputData0[i] - offset - (int32_t)params->inputZeroPoint[0]) * static_cast<float>(inputScalesFp32[0]);
|
|
float inp1 = static_cast<int32_t>(inputData1[0] - offset - (int32_t)params->inputZeroPoint[1]) * static_cast<float>(inputScalesFp32[1]);
|
|
sum = inp0 + inp1;
|
|
} else {
|
|
float inp0 = static_cast<int32_t>(inputData0[i] - offset - (int32_t)params->inputZeroPoint[0]) * static_cast<float>(inputScalesFp32[0]);
|
|
float inp1 = static_cast<int32_t>(inputData1[i] - offset - (int32_t)params->inputZeroPoint[1]) * static_cast<float>(inputScalesFp32[1]);
|
|
sum = inp0 + inp1;
|
|
}
|
|
int value = (int)roundf(sum * inputScalesFp32[2]) + offset + static_cast<int32_t>(params->outputZeroPoint[0]);
|
|
if (value > maxValue) {
|
|
value = maxValue;
|
|
}
|
|
if (value < minValue) {
|
|
value = minValue;
|
|
}
|
|
outputData[i] = value;
|
|
}
|
|
}
|
|
|
|
void MNNBinarySubInt8 (int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* inputRaw1, ssize_t* inputScalesInt32, float* inputScalesFp32, const QuanPrePostParameters* params, size_t elementSize, size_t needBroadcast) {
|
|
float res = 0;
|
|
#ifdef MNN_USE_SSE
|
|
const int offset = 128;
|
|
const uint8_t* inputData0 = (uint8_t*)inputRaw0;
|
|
const uint8_t* inputData1 = (uint8_t*)inputRaw1;
|
|
uint8_t* outputData = (uint8_t*)outputRaw;
|
|
#else
|
|
const int offset = 0;
|
|
const int8_t* inputData0 = inputRaw0;
|
|
const int8_t* inputData1 = inputRaw1;
|
|
int8_t* outputData = outputRaw;
|
|
#endif
|
|
const int maxValue = static_cast<int32_t>(params->maxValue) + offset;
|
|
const int minValue = static_cast<int32_t>(params->minValue) + offset;
|
|
for (int i = 0; i < elementSize; ++i) {
|
|
if (needBroadcast == 0) {
|
|
float inp0 = static_cast<int32_t>(inputData0[0] - offset - (int32_t)params->inputZeroPoint[0]) * static_cast<float>(inputScalesFp32[0]);
|
|
float inp1 = static_cast<int32_t>(inputData1[i] - offset - (int32_t)params->inputZeroPoint[1]) * static_cast<float>(inputScalesFp32[1]);
|
|
res = inp0 - inp1;
|
|
} else if (needBroadcast == 1) {
|
|
float inp0 = static_cast<int32_t>(inputData0[i] - offset - (int32_t)params->inputZeroPoint[0]) * static_cast<float>(inputScalesFp32[0]);
|
|
float inp1 = static_cast<int32_t>(inputData1[0] - offset - (int32_t)params->inputZeroPoint[1]) * static_cast<float>(inputScalesFp32[1]);
|
|
res = inp0 - inp1;
|
|
} else {
|
|
float inp0 = static_cast<int32_t>(inputData0[i] - offset - (int32_t)params->inputZeroPoint[0]) * static_cast<float>(inputScalesFp32[0]);
|
|
float inp1 = static_cast<int32_t>(inputData1[i] - offset - (int32_t)params->inputZeroPoint[1]) * static_cast<float>(inputScalesFp32[1]);
|
|
res = inp0 - inp1;
|
|
}
|
|
int value = (int)roundf(res * inputScalesFp32[2]) + offset + static_cast<int32_t>(params->outputZeroPoint[0]);
|
|
if (value > maxValue) {
|
|
value = maxValue;
|
|
}
|
|
if (value < minValue) {
|
|
value = minValue;
|
|
}
|
|
outputData[i] = value;
|
|
}
|
|
}
|
|
|
|
void MNNBinaryMulInt8 (int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* inputRaw1, ssize_t* inputScalesInt32, float* inputScalesFp32, const QuanPrePostParameters* params, size_t elementSize, size_t needBroadcast) {
|
|
float res = 0;
|
|
#ifdef MNN_USE_SSE
|
|
const int offset = 128;
|
|
const uint8_t* inputData0 = (uint8_t*)inputRaw0;
|
|
const uint8_t* inputData1 = (uint8_t*)inputRaw1;
|
|
uint8_t* outputData = (uint8_t*)outputRaw;
|
|
#else
|
|
const int offset = 0;
|
|
const int8_t* inputData0 = inputRaw0;
|
|
const int8_t* inputData1 = inputRaw1;
|
|
int8_t* outputData = outputRaw;
|
|
#endif
|
|
const int maxValue = static_cast<int32_t>(params->maxValue) + offset;
|
|
const int minValue = static_cast<int32_t>(params->minValue) + offset;
|
|
for (int i = 0; i < elementSize; ++i) {
|
|
if (needBroadcast == 0) {
|
|
float inp0 = (inputData0[0] - offset - params->inputZeroPoint[0]) * inputScalesFp32[0];
|
|
float inp1 = (inputData1[i] - offset - params->inputZeroPoint[1]) * inputScalesFp32[1];
|
|
res = inp0 * inp1;
|
|
} else if (needBroadcast == 1) {
|
|
float inp0 = (inputData0[i] - offset - params->inputZeroPoint[0]) * inputScalesFp32[0];
|
|
float inp1 = (inputData1[0] - offset - params->inputZeroPoint[1]) * inputScalesFp32[1];
|
|
res = inp0 * inp1;
|
|
} else {
|
|
float inp0 = (inputData0[i] - offset - params->inputZeroPoint[0]) * inputScalesFp32[0];
|
|
float inp1 = (inputData1[i] - offset - params->inputZeroPoint[1]) * inputScalesFp32[1];
|
|
res = inp0 * inp1;
|
|
}
|
|
int value = (int)roundf(res * inputScalesFp32[2]) + offset + static_cast<int32_t>(params->outputZeroPoint[0]);
|
|
if (value > maxValue) {
|
|
value = maxValue;
|
|
}
|
|
if (value < minValue) {
|
|
value = minValue;
|
|
}
|
|
outputData[i] = value;
|
|
}
|
|
}
|
|
|
|
void MNNBinaryMinInt8 (int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* inputRaw1, ssize_t* inputScalesInt32, float* inputScalesFp32, const QuanPrePostParameters* params, size_t elementSize, size_t needBroadcast) {
|
|
int res = 0;
|
|
#ifdef MNN_USE_SSE
|
|
const int offset = 128;
|
|
const uint8_t* inputData0 = (uint8_t*)inputRaw0;
|
|
const uint8_t* inputData1 = (uint8_t*)inputRaw1;
|
|
uint8_t* outputData = (uint8_t*)outputRaw;
|
|
#else
|
|
const int offset = 0;
|
|
const int8_t* inputData0 = inputRaw0;
|
|
const int8_t* inputData1 = inputRaw1;
|
|
int8_t* outputData = outputRaw;
|
|
#endif
|
|
const int maxValue = static_cast<int32_t>(params->maxValue) + offset;
|
|
const int minValue = static_cast<int32_t>(params->minValue) + offset;
|
|
for (int i = 0; i < elementSize; ++i) {
|
|
if (needBroadcast == 0) {
|
|
int32_t inp0 = static_cast<int32_t>(inputData0[0] - offset - params->inputZeroPoint[0]) * static_cast<int32_t>(inputScalesInt32[0]);
|
|
int32_t inp1 = static_cast<int32_t>(inputData1[i] - offset - params->inputZeroPoint[1]) * static_cast<int32_t>(inputScalesInt32[1]);
|
|
res = std::min(inp0, inp1);
|
|
} else if (needBroadcast == 1) {
|
|
int32_t inp0 = static_cast<int32_t>(inputData0[i] - offset - params->inputZeroPoint[0]) * static_cast<int32_t>(inputScalesInt32[0]);
|
|
int32_t inp1 = static_cast<int32_t>(inputData1[0] - offset - params->inputZeroPoint[1]) * static_cast<int32_t>(inputScalesInt32[1]);
|
|
res = std::min(inp0, inp1);
|
|
} else {
|
|
int32_t inp0 = static_cast<int32_t>(inputData0[i] - offset - params->inputZeroPoint[0]) * static_cast<int32_t>(inputScalesInt32[0]);
|
|
int32_t inp1 = static_cast<int32_t>(inputData1[i] - offset - params->inputZeroPoint[1]) * static_cast<int32_t>(inputScalesInt32[1]);
|
|
res = std::min(inp0, inp1);
|
|
}
|
|
int value = roundf((res + (1<<15)) / (1 << 16)) + offset + static_cast<int32_t>(params->outputZeroPoint[0]);
|
|
if (res < 0) {
|
|
value = roundf((res - (1<<15)) / (1 << 16)) + offset + static_cast<int32_t>(params->outputZeroPoint[0]);
|
|
}
|
|
if (value > maxValue) {
|
|
value = maxValue;
|
|
}
|
|
if (value < minValue) {
|
|
value = minValue;
|
|
}
|
|
outputData[i] = value;
|
|
}
|
|
}
|
|
|
|
void MNNBinaryMaxInt8 (int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* inputRaw1, ssize_t* inputScalesInt32, float* inputScalesFp32, const QuanPrePostParameters* params, size_t elementSize, size_t needBroadcast) {
|
|
int res = 0;
|
|
#ifdef MNN_USE_SSE
|
|
const int offset = 128;
|
|
const uint8_t* inputData0 = (uint8_t*)inputRaw0;
|
|
const uint8_t* inputData1 = (uint8_t*)inputRaw1;
|
|
uint8_t* outputData = (uint8_t*)outputRaw;
|
|
#else
|
|
const int offset = 0;
|
|
const int8_t* inputData0 = inputRaw0;
|
|
const int8_t* inputData1 = inputRaw1;
|
|
int8_t* outputData = outputRaw;
|
|
#endif
|
|
const int maxValue = static_cast<int32_t>(params->maxValue) + offset;
|
|
const int minValue = static_cast<int32_t>(params->minValue) + offset;
|
|
for (int i = 0; i < elementSize; ++i) {
|
|
if (needBroadcast == 0) {
|
|
int32_t inp0 = static_cast<int32_t>(inputData0[0] - offset - params->inputZeroPoint[0]) * static_cast<int32_t>(inputScalesInt32[0]);
|
|
int32_t inp1 = static_cast<int32_t>(inputData1[i] - offset - params->inputZeroPoint[1]) * static_cast<int32_t>(inputScalesInt32[1]);
|
|
res = std::max(inp0, inp1);
|
|
} else if (needBroadcast == 1) {
|
|
int32_t inp0 = static_cast<int32_t>(inputData0[i] - offset - params->inputZeroPoint[0]) * static_cast<int32_t>(inputScalesInt32[0]);
|
|
int32_t inp1 = static_cast<int32_t>(inputData1[0] - offset - params->inputZeroPoint[1]) * static_cast<int32_t>(inputScalesInt32[1]);
|
|
res = std::max(inp0, inp1);
|
|
} else {
|
|
int32_t inp0 = static_cast<int32_t>(inputData0[i] - offset - params->inputZeroPoint[0]) * static_cast<int32_t>(inputScalesInt32[0]);
|
|
int32_t inp1 = static_cast<int32_t>(inputData1[i] - offset - params->inputZeroPoint[1]) * static_cast<int32_t>(inputScalesInt32[1]);
|
|
res = std::max(inp0, inp1);
|
|
}
|
|
int value = (res + (1<<15)) / (1 << 16) + offset + static_cast<int32_t>(params->outputZeroPoint[0]);
|
|
if (res < 0) {
|
|
value = (res - (1<<15)) / (1 << 16) + offset + static_cast<int32_t>(params->outputZeroPoint[0]);
|
|
}
|
|
if (value > maxValue) {
|
|
value = maxValue;
|
|
}
|
|
if (value < minValue) {
|
|
value = minValue;
|
|
}
|
|
outputData[i] = value;
|
|
}
|
|
}
|
|
void MNNBinarySqdInt8 (int8_t* outputRaw, const int8_t* inputRaw0, const int8_t* inputRaw1, ssize_t* inputScalesInt32, float* inputScalesFp32, const QuanPrePostParameters* params, size_t elementSize, size_t needBroadcast) {
|
|
float res = 0;
|
|
#ifdef MNN_USE_SSE
|
|
const int offset = 128;
|
|
const uint8_t* inputData0 = (uint8_t*)inputRaw0;
|
|
const uint8_t* inputData1 = (uint8_t*)inputRaw1;
|
|
uint8_t* outputData = (uint8_t*)outputRaw;
|
|
#else
|
|
const int offset = 0;
|
|
const int8_t* inputData0 = inputRaw0;
|
|
const int8_t* inputData1 = inputRaw1;
|
|
int8_t* outputData = outputRaw;
|
|
#endif
|
|
const int maxValue = static_cast<int32_t>(params->maxValue) + offset;
|
|
const int minValue = static_cast<int32_t>(params->minValue) + offset;
|
|
for (int i = 0; i < elementSize; ++i) {
|
|
if (needBroadcast == 0) {
|
|
float inp0 = (inputData0[0] - offset - params->inputZeroPoint[0]) * inputScalesFp32[0];
|
|
float inp1 = (inputData1[i] - offset - params->inputZeroPoint[1]) * inputScalesFp32[1];
|
|
res = (inp0 - inp1) * (inp0 - inp1);
|
|
} else if (needBroadcast == 1) {
|
|
float inp0 = (inputData0[i] - offset - params->inputZeroPoint[0]) * inputScalesFp32[0];
|
|
float inp1 = (inputData1[0] - offset - params->inputZeroPoint[1]) * inputScalesFp32[1];
|
|
res = (inp0 - inp1) * (inp0 - inp1);
|
|
} else {
|
|
float inp0 = (inputData0[i] - offset - params->inputZeroPoint[0]) * inputScalesFp32[0];
|
|
float inp1 = (inputData1[i] - offset - params->inputZeroPoint[1]) * inputScalesFp32[1];
|
|
res = (inp0 - inp1) * (inp0 - inp1);
|
|
}
|
|
int value = (int)roundf(res * inputScalesFp32[2]) + offset + static_cast<int32_t>(params->outputZeroPoint[0]);
|
|
if (value > maxValue) {
|
|
value = maxValue;
|
|
}
|
|
if (value < minValue) {
|
|
value = minValue;
|
|
}
|
|
outputData[i] = value;
|
|
}
|
|
}
|
|
|
|
void MNNScaleAndAddBiasInt8(int8_t* dst, const int8_t* src, const int32_t* bias, const int32_t* alpha, int32_t mShiftBits, ssize_t minValue, ssize_t maxValue, int8_t* inputZeroPoint, int8_t* outputZeroPoint, ssize_t planeNumber, ssize_t biasNumber, ssize_t pack) {
|
|
#ifdef MNN_USE_SSE
|
|
const uint8_t* srcPtr = (uint8_t*)src;
|
|
uint8_t* dstPtr = (uint8_t*)dst;
|
|
int offset = 128;
|
|
#else
|
|
const int8_t* srcPtr = src;
|
|
int8_t* dstPtr = dst;
|
|
int offset = 0;
|
|
#endif
|
|
int intputZeroPointValue = *inputZeroPoint + offset;
|
|
int outputZeroPointValue = *outputZeroPoint + offset;
|
|
int d = mShiftBits - 1;
|
|
|
|
for (int z = 0; z < biasNumber; ++z) {
|
|
auto dstZ = dstPtr + planeNumber * pack * z;
|
|
const auto srcZ = srcPtr + planeNumber * pack * z;
|
|
std::vector<int32_t> biasZ(pack), alphaZ(pack);
|
|
for (int i = 0; i < pack; ++i) {
|
|
biasZ[i] = *(bias + pack * z + i);
|
|
alphaZ[i] = *(alpha + pack * z + i);
|
|
}
|
|
for (int p = 0; p < planeNumber; ++p) {
|
|
auto dstX = dstZ + pack * p;
|
|
const auto srcX = srcZ + pack * p;
|
|
|
|
for (int i = 0; i < pack; ++i) {
|
|
int32_t val = static_cast<int32_t>(srcX[i] - intputZeroPointValue) * alphaZ[i] + biasZ[i];
|
|
|
|
int valOut = roundf((val + (1<<d)) / (1 << mShiftBits)) + outputZeroPointValue;
|
|
if (val < 0) {
|
|
valOut = roundf((val - (1<<d)) / (1 << mShiftBits)) + outputZeroPointValue;
|
|
}
|
|
|
|
if (valOut > maxValue + offset) {
|
|
valOut = maxValue + offset;
|
|
}
|
|
if (valOut < minValue + offset) {
|
|
valOut = minValue + offset;
|
|
}
|
|
dstX[i] = valOut;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // #ifndef MNN_USE_NEON
|
|
#ifndef MNN_USE_SSE
|
|
|
|
void MNNInt8FunctionInit() {
|
|
// do nothing
|
|
}
|
|
#endif // #ifndef MNN_USE_SSE
|
|
|
|
template<int EP, int LP, int HP>
|
|
static void _ArmBasicMNNPackC4ForMatMul_A(int8_t* destOrigin, int8_t const** sourceGroup, const int32_t* info, const int32_t* el) {
|
|
int number = info[0];
|
|
int eReal = info[1];
|
|
int eOutsideStride = info[2] / sizeof(float);
|
|
int eDest = EP;
|
|
int offset = info[3];
|
|
const int LUNIT = LP / sizeof(float);
|
|
int realDstCount = info[4];
|
|
for (int n=0; n<number; ++n) {
|
|
int e = el[4 * n + 0]; // to fill
|
|
int l = el[4 * n + 1];
|
|
int eOffset = el[4 * n + 2]; // have filled
|
|
int lOffset = el[4 * n + 3];
|
|
int lC = lOffset / LP;
|
|
int lR = lOffset % LP;
|
|
int eC = eOffset / eDest;
|
|
int eR = eOffset % eDest;
|
|
int eS = eDest - eR;
|
|
// printf("e=%d, eC=%d, lC=%d, eR=%d, lR=%d\n", e, eC, lC, eR, lR);
|
|
bool lastBag = false;
|
|
int eOutsideStride4LastBag = eOutsideStride;
|
|
if (realDstCount % EP > 0) {
|
|
int jobsE = realDstCount - eOffset - e;
|
|
if (jobsE == 0 || (jobsE < (realDstCount % EP))) {
|
|
lastBag = true;
|
|
}
|
|
}
|
|
auto dest = (int32_t*)(destOrigin + lC * eDest * LP + lR + eC * info[2] + eR * LP);
|
|
auto source = (int32_t*)sourceGroup[n];
|
|
int lRemain = l / 4;
|
|
int lR4 = lR / 4;
|
|
int lS = LUNIT - lR4;
|
|
|
|
if (lastBag && e + eR < EP) {
|
|
int elast = ALIMAX(eR + e, realDstCount % EP);
|
|
dest = (int32_t*)(destOrigin + lC * elast * LP + lR + eC * info[2] + eR * LP);
|
|
}
|
|
// Step for start
|
|
int offsetLC = lC * LUNIT + lR / 4;
|
|
|
|
if (lR4 > 0) {
|
|
int step = ALIMIN(lS, lRemain);
|
|
for (int x=0; x<step; ++x) {
|
|
int eRemain = e;
|
|
auto d = dest + x;
|
|
auto s = source + x * eReal;
|
|
if (eR > 0) {
|
|
int eStep = ALIMIN(eRemain, eS);
|
|
for (int yi=0; yi<eStep; ++yi) {
|
|
d[yi * LUNIT] = s[yi * offset];
|
|
}
|
|
eRemain-=eStep;
|
|
if (!lastBag ||eRemain >= EP) {
|
|
d += (eOutsideStride - eR * LUNIT);
|
|
} else {
|
|
int eFill = ALIMAX(eRemain, realDstCount % EP); // maybe padding>0
|
|
eOutsideStride4LastBag = eOutsideStride - ((offsetLC / LUNIT) * EP * LUNIT);
|
|
d += (eOutsideStride4LastBag - eR * LUNIT + (offsetLC / LUNIT) * eFill * LUNIT);
|
|
}
|
|
s += eS * offset;
|
|
}
|
|
while (eRemain > 0) {
|
|
int eStep = ALIMIN(eDest, eRemain);
|
|
for (int yi=0; yi<eStep; ++yi) {
|
|
d[yi * LUNIT] = s[yi * offset];
|
|
}
|
|
eRemain-=eStep;
|
|
if (!lastBag || eRemain >= EP) {
|
|
d+= eOutsideStride;
|
|
} else {
|
|
int eFill = ALIMAX(eRemain, realDstCount % EP); // maybe padding>0
|
|
eOutsideStride4LastBag = eOutsideStride - ((offsetLC / LUNIT) * EP * LUNIT);
|
|
d+= (eOutsideStride4LastBag + (offsetLC / LUNIT) * eFill * LUNIT);
|
|
}
|
|
s+= eStep * offset;
|
|
}
|
|
offsetLC++;
|
|
}
|
|
lRemain -= step;
|
|
if (lastBag && e + eR < EP) {
|
|
int eFill = ALIMAX(realDstCount % EP, e + eR);
|
|
int nextLP = (eFill * LP - lR) / sizeof(int32_t);
|
|
dest += nextLP;
|
|
} else {
|
|
int nextLP = (eDest * LP - lR) / sizeof(int32_t);
|
|
dest += nextLP;
|
|
}
|
|
source += eReal * step;
|
|
}
|
|
|
|
while (lRemain > 0) {
|
|
int step = ALIMIN(lRemain, LUNIT);
|
|
for (int x=0; x<step; ++x) {
|
|
int eRemain = e;
|
|
auto d = dest + x;
|
|
auto s = source + x * eReal;
|
|
if (eR > 0) {
|
|
int eStep = ALIMIN(eRemain, eS);
|
|
for (int yi=0; yi<eStep; ++yi) {
|
|
d[yi * LUNIT] = s[yi * offset];
|
|
}
|
|
eRemain-=eStep;
|
|
if (!lastBag ||eRemain >= EP) {
|
|
d += (eOutsideStride - eR * LUNIT);
|
|
} else {
|
|
int eFill = ALIMAX(eRemain, realDstCount % EP); // maybe padding>0
|
|
eOutsideStride4LastBag = eOutsideStride - ((offsetLC / LUNIT) * EP * LUNIT);
|
|
d += (eOutsideStride4LastBag - eR * LUNIT + (offsetLC / LUNIT) * eFill * LUNIT);
|
|
}
|
|
s += eS * offset;
|
|
}
|
|
while (eRemain > 0) {
|
|
int eStep = ALIMIN(eDest, eRemain);
|
|
for (int yi=0; yi<eStep; ++yi) {
|
|
d[yi * LUNIT] = s[yi * offset];
|
|
}
|
|
eRemain-=eStep;
|
|
if (!lastBag || eRemain >= EP) {
|
|
d+= eOutsideStride;
|
|
} else {
|
|
int eFill = ALIMAX(eRemain, realDstCount % EP); // maybe padding>0
|
|
eOutsideStride4LastBag = eOutsideStride - ((offsetLC / LUNIT) * EP * LUNIT);
|
|
d+= (eOutsideStride4LastBag + (offsetLC / LUNIT) * eFill * LUNIT);
|
|
}
|
|
s+= eStep * offset;
|
|
}
|
|
offsetLC++;
|
|
}
|
|
|
|
lRemain -= step;
|
|
if (lastBag && e + eR < EP) {
|
|
int efill = ALIMAX(e + eR, realDstCount % EP);
|
|
dest += efill * LUNIT;
|
|
} else {
|
|
dest += eDest * LUNIT;
|
|
}
|
|
source += eReal * step;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void MNNGetGemmUnit(int* UNIT, int* SRC_UNIT, int* DST_XUNIT) {
|
|
*UNIT = GEMM_INT8_UNIT;
|
|
*SRC_UNIT = GEMM_INT8_SRC_UNIT;
|
|
*DST_XUNIT = GEMM_INT8_DST_XUNIT;
|
|
}
|
|
|
|
static void MNNGetGemmUnitSdot(int* UNIT, int* SRC_UNIT, int* DST_XUNIT) {
|
|
*UNIT = 8;
|
|
*SRC_UNIT = 4;
|
|
*DST_XUNIT = 12;
|
|
}
|
|
|
|
static void MNNGetGemmUnitI8mm(int* UNIT, int* SRC_UNIT, int* DST_XUNIT) {
|
|
*UNIT = 8;
|
|
*SRC_UNIT = 8;
|
|
*DST_XUNIT = 10;
|
|
}
|
|
|
|
static void MNNGetGemmUnitSme2(int* UNIT, int* SRC_UNIT, int* DST_XUNIT) {
|
|
*UNIT = 16;
|
|
*SRC_UNIT = 4;
|
|
*DST_XUNIT = 16;
|
|
}
|
|
|
|
template<int EP, int HP>
|
|
static void _ArmBasicMNNPackC4ForMatMul_A_L4(int8_t* destOrigin, int8_t const** sourceGroup, const int32_t* info, const int32_t* el) {
|
|
int number = info[0];
|
|
int eReal = info[1];
|
|
int eDest = EP;
|
|
int offset = info[3];
|
|
const int LP = 4;
|
|
int eOutsideStride = info[2] / sizeof(float);
|
|
int kernelCountUnit = eOutsideStride;
|
|
int realDstCount = info[4];
|
|
for (int n=0; n<number; ++n) {
|
|
int e = el[4 * n + 0];
|
|
int l = el[4 * n + 1];
|
|
int eOffset = el[4 * n + 2];
|
|
int lOffset = el[4 * n + 3];
|
|
int eC = eOffset / EP;
|
|
int eR = eOffset % EP;
|
|
int eS = eDest - eR;
|
|
bool lastBag = false;
|
|
int eOutsideStride4LastBag = eOutsideStride;
|
|
int eres = realDstCount - eOffset;
|
|
if (realDstCount % EP > 0) {
|
|
int jobsE = realDstCount - eOffset - e;
|
|
if (jobsE == 0 || (jobsE < (realDstCount % EP))) {
|
|
lastBag = true;
|
|
}
|
|
}
|
|
auto dest = (int32_t*)(destOrigin + lOffset * eDest + eC * info[2] + eR * LP);
|
|
auto source = (int32_t*)sourceGroup[n];
|
|
int lRemain = l / sizeof(float);
|
|
if (lastBag && e + eR < EP) {
|
|
int elast = ALIMIN(ALIMAX(eR + e, realDstCount % EP), EP);
|
|
dest = (int32_t*)(destOrigin + lOffset * elast + eC * info[2] + eR * LP);
|
|
}
|
|
int offsetLC = lOffset / 4;
|
|
for (int x=0; x<lRemain; ++x) {
|
|
int eRemain = e;
|
|
auto d = dest;
|
|
auto s = source;
|
|
if (1 == offset) {
|
|
if (eR > 0) {
|
|
int eStep = ALIMIN(eRemain, eS);
|
|
::memcpy(d, s, eStep * sizeof(int32_t));
|
|
eRemain-=eStep;
|
|
if (!lastBag ||eRemain >= EP) {
|
|
d += (eOutsideStride - eR);
|
|
} else {
|
|
int eFill = ALIMAX(eRemain, realDstCount % EP); // maybe padding>0
|
|
eOutsideStride4LastBag = eOutsideStride - (EP * 4 * offsetLC / sizeof(float));
|
|
d += (eOutsideStride4LastBag - eR + offsetLC * eFill);
|
|
}
|
|
s += eS * offset;
|
|
}
|
|
while (eRemain > 0) {
|
|
int eStep = ALIMIN(eDest, eRemain);
|
|
::memcpy(d, s, eStep * sizeof(int32_t));
|
|
eRemain-=eStep;
|
|
if (!lastBag || eRemain >= EP) {
|
|
d+= eOutsideStride;
|
|
} else {
|
|
int eFill = ALIMAX(eRemain, realDstCount % EP); // maybe padding>0
|
|
eOutsideStride4LastBag = eOutsideStride - (EP * 4 * offsetLC / sizeof(float));
|
|
d+= (eOutsideStride4LastBag + offsetLC * eFill);
|
|
}
|
|
s+= eStep * offset;
|
|
}
|
|
} else {
|
|
if (eR > 0) {
|
|
int eStep = ALIMIN(eRemain, eS);
|
|
for (int yi=0; yi<eStep; ++yi) {
|
|
d[yi] = s[yi * offset];
|
|
}
|
|
eRemain-=eStep;
|
|
if (!lastBag ||eRemain >= EP) {
|
|
d += (eOutsideStride - eR);
|
|
} else {
|
|
int eFill = ALIMAX(eRemain, realDstCount % EP); // maybe padding>0
|
|
eOutsideStride4LastBag = eOutsideStride - (EP * 4 * offsetLC / sizeof(float));
|
|
d += (eOutsideStride4LastBag - eR + offsetLC * eFill);
|
|
}
|
|
s += eS * offset;
|
|
}
|
|
while (eRemain > 0) {
|
|
int eStep = ALIMIN(eDest, eRemain);
|
|
for (int yi=0; yi<eStep; ++yi) {
|
|
d[yi] = s[yi * offset];
|
|
}
|
|
eRemain-=eStep;
|
|
if (!lastBag || eRemain >= EP) {
|
|
d+= eOutsideStride;
|
|
} else {
|
|
int eFill = ALIMAX(eRemain, realDstCount % EP); // maybe padding>0
|
|
eOutsideStride4LastBag = eOutsideStride - (EP * 4 * offsetLC / sizeof(float));
|
|
d+= (eOutsideStride4LastBag + offsetLC * eFill);
|
|
}
|
|
s+= eStep * offset;
|
|
}
|
|
}
|
|
source += eReal;
|
|
if (lastBag && e + eR < EP ) { // eR=0;eR>0
|
|
int efill = ALIMAX(e + eR, realDstCount % EP);
|
|
dest += efill;
|
|
} else {
|
|
dest += eDest;
|
|
}
|
|
offsetLC++;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace MNN {
|
|
|
|
static CoreInt8Functions* gCoreFunc = nullptr;
|
|
|
|
void MNNCoreInt8FunctionInit() {
|
|
/* CoreInt8Functions without sdot */
|
|
gCoreFunc = new CoreInt8Functions;
|
|
auto core = MNNGetCoreFunctions();
|
|
|
|
// MatMul
|
|
gCoreFunc->Int8GemmKernel = MNNGemmInt8AddBiasScale_16x4_Unit;
|
|
gCoreFunc->Int8GemmKernelFast = MNNGemmInt8AddBiasScale_16x4_Unit_FAST;
|
|
gCoreFunc->MNNGetGemmUnit = MNNGetGemmUnit;
|
|
#ifdef MNN_LOW_MEMORY
|
|
gCoreFunc->Int8GemmKernel_W4 = MNNGemmInt8AddBiasScale_16x4_w4_Unit;
|
|
#endif
|
|
|
|
// Im2Col
|
|
gCoreFunc->MNNPackC4Int8ForMatMul_A = _ArmBasicMNNPackC4ForMatMul_A<GEMM_INT8_DST_XUNIT, GEMM_INT8_SRC_UNIT, GEMM_INT8_UNIT>;
|
|
// conv depthwise
|
|
gCoreFunc->ConvDepthwiseLineInt8 = MNNLineDepthWiseInt8AddBiasScaleUnit;
|
|
gCoreFunc->MNNFloat2Int8 = MNNFloat2Int8;
|
|
gCoreFunc->MNNInt8ScaleToFloat = MNNInt8ScaleToFloat;
|
|
|
|
// sparse
|
|
gCoreFunc->MNNGetSparseQuantMatMulPackMode = MNNGetSparseQuantMatMulPackMode;
|
|
gCoreFunc->MNNPackForSparseQuantMatMul_B = MNNPackForSparseQuantMatMul_B;
|
|
gCoreFunc->MNNPackedSparseQuantMatMulEpx1 = MNNPackedSparseQuantMatMulEpx1;
|
|
gCoreFunc->MNNPackedSparseQuantMatMulEpx4 = MNNPackedSparseQuantMatMulEpx4;
|
|
gCoreFunc->MNNPackC4Int8ForMatMul_ASparse = _MNNPackC4Int8ForMatMul_ASparse;
|
|
|
|
// pooling
|
|
gCoreFunc->MNNAvgPoolInt8 = MNNAvgPoolInt8;
|
|
gCoreFunc->MNNMaxPoolInt8 = MNNMaxPoolInt8;
|
|
|
|
#ifdef MNN_SUPPORT_QUANT_EXTEND
|
|
// ReluWithSlopeChannel
|
|
gCoreFunc->MNNReluWithSlopeChannelInt8 = MNNReluWithSlopeChannelInt8;
|
|
#endif
|
|
|
|
#if defined(__aarch64__)
|
|
if (core->supportSDot) {
|
|
// MatMul
|
|
gCoreFunc->Int8GemmKernel = MNNGemmInt8AddBiasScale_ARMV82_Unit;
|
|
gCoreFunc->Int8GemmKernelFast = MNNGemmInt8AddBiasScale_ARMV82_Unit;
|
|
gCoreFunc->MNNGetGemmUnit = MNNGetGemmUnitSdot;
|
|
// Im2Col
|
|
gCoreFunc->MNNPackC4Int8ForMatMul_A = _ArmBasicMNNPackC4ForMatMul_A_L4<12, 8>;
|
|
// ConvDepthwise
|
|
gCoreFunc->ConvDepthwise3x3LineInt8_ARM82 = MNNLineDepthWiseInt8AddBiasScale_ARMV82_Unit3X3;
|
|
core->MNNSumByAxisLForMatmul_A = MNNSumByAxisLForMatmul_A_ARM82;
|
|
#if defined(MNN_LOW_MEMORY)
|
|
#ifdef MNN_USE_ARMV82
|
|
gCoreFunc->DynamicQuanInput_ARM82 = DynamicQuanInput_ARM82;
|
|
gCoreFunc->MNNGemmInt8AddBiasScale_Unit_FP16 = MNNGemmInt8AddBiasScale_ARMV82_Unit_FP16;
|
|
gCoreFunc->MNNGemmInt8AddBiasScale_w4_Unit_FP16 = MNNGemmInt8AddBiasScale_ARMV82_w4_Unit_FP16;
|
|
gCoreFunc->DynamicQuanInputAndReorder_ARM82 = DynamicQuanInputAndReorder_ARM82;
|
|
#endif
|
|
gCoreFunc->Int8GemmKernel_W4 = MNNGemmInt8AddBiasScale_ARMV82_w4_Unit;
|
|
#endif
|
|
}
|
|
if (core->supportI8mm) {
|
|
// MatMul
|
|
gCoreFunc->Int8GemmKernel = MNNGemmInt8AddBiasScale_ARMV86_Unit;
|
|
gCoreFunc->Int8GemmKernelFast = MNNGemmInt8AddBiasScale_ARMV86_Unit;
|
|
gCoreFunc->MNNGetGemmUnit = MNNGetGemmUnitI8mm;
|
|
core->MNNSumByAxisLForMatmul_A = MNNSumByAxisLForMatmul_A_ARM86;
|
|
|
|
#if defined(MNN_LOW_MEMORY)
|
|
gCoreFunc->Int8GemmKernel_W4 = MNNGemmInt8AddBiasScale_ARMV86_w4_Unit;
|
|
|
|
#ifdef MNN_USE_ARMV82
|
|
gCoreFunc->MNNGemmInt8AddBiasScale_Unit_FP16 = MNNGemmInt8AddBiasScale_ARMV86_Unit_FP16;
|
|
gCoreFunc->MNNGemmInt8AddBiasScale_w4_Unit_FP16 = MNNGemmInt8AddBiasScale_ARMV86_w4_Unit_FP16;
|
|
#endif
|
|
#endif
|
|
// Im2Col
|
|
gCoreFunc->MNNPackC4Int8ForMatMul_A = _ArmBasicMNNPackC4ForMatMul_A<10, 8, 8>;
|
|
}
|
|
#endif // __aarch64__
|
|
{
|
|
core->backendMatmulRelatedFunctions.Int8GemmKernel = gCoreFunc->Int8GemmKernel;
|
|
core->backendMatmulRelatedFunctions.Int8GemmKernelFast = gCoreFunc->Int8GemmKernelFast;
|
|
core->backendMatmulRelatedFunctions.Int8GemmKernel_W4 = gCoreFunc->Int8GemmKernel_W4;
|
|
core->backendMatmulRelatedFunctions.MNNGemmInt8AddBiasScale_Unit_FP16 = gCoreFunc->MNNGemmInt8AddBiasScale_Unit_FP16;
|
|
core->backendMatmulRelatedFunctions.MNNGemmInt8AddBiasScale_w4_Unit_FP16 = gCoreFunc->MNNGemmInt8AddBiasScale_w4_Unit_FP16;
|
|
core->backendMatmulRelatedFunctions.MNNGetGemmUnit = gCoreFunc->MNNGetGemmUnit;
|
|
core->backendMatmulRelatedFunctions.MNNPackC4Int8ForMatMul_A = gCoreFunc->MNNPackC4Int8ForMatMul_A;
|
|
|
|
core->backendMatmulRelatedFunctions.MNNSumByAxisLForMatmul_A = core->MNNSumByAxisLForMatmul_A;
|
|
}
|
|
|
|
#ifdef __aarch64__
|
|
|
|
#ifdef MNN_SME2
|
|
if (core->supportSME2) {
|
|
gCoreFunc->MNNGetGemmUnit = MNNGetGemmUnitSme2;
|
|
gCoreFunc->Int8GemmKernel_W4 = MNNGemmInt8AddBiasScale_SME2_w4_Fp32;
|
|
gCoreFunc->Int8GemmKernel = MNNGemmInt8AddBiasScale_SME2_w8_Fp32;
|
|
gCoreFunc->MNNGemmInt8AddBiasScale_w4_Unit_FP16 = MNNGemmInt8AddBiasScale_SME2_w4_Fp16;
|
|
gCoreFunc->MNNGemmInt8AddBiasScale_Unit_FP16 = MNNGemmInt8AddBiasScale_SME2_w8_Fp16;
|
|
core->MNNSumByAxisLForMatmul_A = MNNSumByAxisLForMatmul_A_SME2;
|
|
gCoreFunc->MNNPackC4Int8ForMatMul_A = _ArmBasicMNNPackC4ForMatMul_A<16, 4, 16>;
|
|
gCoreFunc->Int8GemmKernelFast = MNNGemmInt8AddBiasScale_SME2_w8_Fp32;
|
|
|
|
core->sme2MatmulRelatedFuncions.MNNGetGemmUnit = MNNGetGemmUnitSme2;
|
|
core->sme2MatmulRelatedFuncions.Int8GemmKernel_W4 = MNNGemmInt8AddBiasScale_SME2_w4_Fp32;
|
|
core->sme2MatmulRelatedFuncions.Int8GemmKernel = MNNGemmInt8AddBiasScale_SME2_w8_Fp32;
|
|
core->sme2MatmulRelatedFuncions.MNNGemmInt8AddBiasScale_w4_Unit_FP16 = MNNGemmInt8AddBiasScale_SME2_w4_Fp16;
|
|
core->sme2MatmulRelatedFuncions.MNNGemmInt8AddBiasScale_Unit_FP16 = MNNGemmInt8AddBiasScale_SME2_w8_Fp16;
|
|
core->sme2MatmulRelatedFuncions.MNNSumByAxisLForMatmul_A = MNNSumByAxisLForMatmul_A_SME2;
|
|
core->sme2MatmulRelatedFuncions.MNNPackC4Int8ForMatMul_A = _ArmBasicMNNPackC4ForMatMul_A<16, 4, 16>;
|
|
core->sme2MatmulRelatedFuncions.Int8GemmKernelFast = MNNGemmInt8AddBiasScale_SME2_w8_Fp32;
|
|
}
|
|
#endif
|
|
#endif
|
|
MNNInt8FunctionInit();
|
|
}
|
|
CoreInt8Functions* MNNGetInt8CoreFunctions() {
|
|
return gCoreFunc;
|
|
}
|
|
};
|