MNN/source/backend/cpu/CPUStft.cpp

94 lines
3.2 KiB
C++

//
// CPUStft.cpp
// MNN
//
// Created by MNN on 2024/11/26.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef MNN_BUILD_AUDIO
#ifndef M_PI
#define M_PI 3.141592654
#endif
#include <algorithm>
#include "backend/cpu/CPUStft.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "core/Concurrency.h"
#include "core/TensorUtils.hpp"
#include "core/Macro.h"
#include "compute/CommonOptFunction.h"
namespace MNN {
static void MNNDftAbs(const float* input, const float* window, float* output, float* buffer, int nfft) {
for (int i = 0; i < nfft; ++i) {
buffer[i] = input[i] * window[i];
}
for (int k = 0; k < nfft / 2 + 1; ++k) {
float real_sum = 0.f, imag_sum = 0.f;
for (int n = 0; n < nfft; ++n) {
float angle = 2 * M_PI * k * n / nfft;
real_sum += buffer[n] * std::cos(angle);
imag_sum -= buffer[n] * std::sin(angle);
}
output[k] = std::sqrt(real_sum * real_sum + imag_sum * imag_sum);
}
}
CPUStft::CPUStft(Backend* backend, int nfft, int hop_length, bool abs)
: Execution(backend), mNfft(nfft), mHopLength(hop_length), mAbs(abs) {
// nothing to do
}
ErrorCode CPUStft::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto cpuBn = static_cast<CPUBackend*>(backend());
mTmpFrames.buffer().dim[0].extent = cpuBn->threadNumber();
mTmpFrames.buffer().dim[1].extent = mNfft;
TensorUtils::getDescribe(&mTmpFrames)->dimensionFormat = MNN_DATA_FORMAT_NHWC;
mTmpFrames.buffer().dimensions = 2;
mTmpFrames.buffer().type = inputs[0]->getType();
backend()->onAcquireBuffer(&mTmpFrames, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mTmpFrames, Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPUStft::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const float* sample = inputs[0]->host<float>();
const float* window = inputs[1]->host<float>();
float* buffer = mTmpFrames.host<float>();
float* output = outputs[0]->host<float>();
auto outputShape = outputs[0]->shape();
int frames = outputShape[0];
int col = outputShape[1];
auto cpuBn = static_cast<CPUBackend*>(backend());
int threadNum = cpuBn->threadNumber();
// div frames to threadNum
int threadNumber = std::min(threadNum, frames);
int sizeDivide = frames / threadNumber;
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
int number = sizeDivide;
if (tId == threadNumber - 1) {
number = frames - tId * sizeDivide;
}
for (int i = tId * sizeDivide; i < tId * sizeDivide + number; ++i) {
MNNDftAbs(sample + i * mHopLength, window, output + i * col, buffer + tId * mNfft, mNfft);
}
};
MNN_CONCURRENCY_END();
return NO_ERROR;
}
class CPUStftCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const {
auto stft = op->main_as_StftParam();
return new CPUStft(backend, stft->n_fft(), stft->hop_length(), stft->abs());
}
};
REGISTER_CPU_OP_CREATOR_AUDIO(CPUStftCreator, OpType_Stft);
} // namespace MNN
#endif // MNN_BUILD_AUDIO