mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			121 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			121 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUHistogram.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2022/07/26.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUHistogram.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "core/Concurrency.h"
 | |
| #include "core/Macro.h"
 | |
| #include <cmath>
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUHistogram::CPUHistogram(Backend *backend, const Op* op): Execution(backend) {
 | |
|     auto param = op->main_as_ArgMax();
 | |
|     mChannel = param->axis();
 | |
|     mBinNum = param->outMaxVal();
 | |
|     mMin = param->softmaxThreshold();
 | |
|     mMax = param->topK();
 | |
|     mAlpha = static_cast<float>(mBinNum) / (mMax - mMin);
 | |
|     mBeta = mAlpha * mMin;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| ErrorCode CPUHistogram::histogram(Tensor* input, Tensor* output) {
 | |
|     auto iptr = input->host<T>() + mChannel;
 | |
|     auto optr = output->host<float>();
 | |
|     memset(optr, 0, mBinNum * sizeof(float));
 | |
|     for (int i = 0; i < mSize; i++) {
 | |
|         T val = iptr[i * mStride];
 | |
|         if (val >= mMin && val <= mMax) {
 | |
|             const int bin = (int)(val * mAlpha - mBeta);
 | |
|             optr[std::min(bin, mBinNum -1)]++;
 | |
|         }
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| ErrorCode CPUHistogram::histogram<uint8_t>(Tensor* input, Tensor* output) {
 | |
|     auto iptr = input->host<uint8_t>() + mChannel;
 | |
|     auto optr = output->host<float>();
 | |
|     int hist_map[256] = { 0 };
 | |
|     // add hist_ptr to avoid iOS compile error: cannot refer to declaration with an array type inside block
 | |
|     int* hist_ptr = hist_map;
 | |
| //    auto numberThread = ((CPUBackend*)backend())->threadNumber();
 | |
|     // TODO: Support multi thread
 | |
|     int numberThread = 1;
 | |
|     int sizeDivide = mSize / numberThread;
 | |
|     MNN_CONCURRENCY_BEGIN(tId, numberThread) {
 | |
|         int number = sizeDivide;
 | |
|         if (tId == numberThread - 1) {
 | |
|             number = mSize - tId * sizeDivide;
 | |
|         }
 | |
|         auto src = iptr + tId * sizeDivide * mStride;
 | |
|         for (int i = 0; i < number; i++) {
 | |
|             hist_ptr[src[i * mStride]]++;
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     memset(optr, 0, mBinNum * sizeof(float));
 | |
|     for (int i = std::max(mMin, 0); i <= std::min(mMax, 255); i++) {
 | |
|         int bin = std::min((int)(i * mAlpha - mBeta), mBinNum -1);
 | |
|         optr[bin] = hist_map[i];
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUHistogram::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto input = inputs[0], output = outputs[0];
 | |
|     /*
 | |
|      1. mAlpha, mBeta
 | |
|         binIdx = (val - mMin) / (mMax - mMin) * mBinNum
 | |
|         mAlpha = mBinNum / (mMax - mMin)
 | |
|         mBeta  = mAlpha * mMin
 | |
|             -> binIdx = val * mAlpha - mBeta
 | |
| 
 | |
|      2. mChannel, mSize, mStride
 | |
|         mChannel < 0  : compute all element of input
 | |
|         mChannel >= 0 : last dim as channel, and other dim is plane; compute the mChannel plane of input;
 | |
|      */
 | |
|     if (mChannel < 0) {
 | |
|         mSize = input->elementSize();
 | |
|         mStride = 1;
 | |
|         mChannel = 0;
 | |
|     } else {
 | |
|         mSize = 1;
 | |
|         int lastDim = input->dimensions() - 1;
 | |
|         for (int i = 0; i < lastDim; i++) {
 | |
|             mSize *= input->length(i);
 | |
|         }
 | |
|         mStride = input->length(lastDim);
 | |
|         MNN_ASSERT(mChannel <= mStride);
 | |
|         mChannel = std::min(mChannel, mStride);
 | |
|     }
 | |
|     if (input->getType() == halide_type_of<float>()) {
 | |
|         return histogram<float>(input, output);
 | |
|     }
 | |
|     if (input->getType() == halide_type_of<int>()) {
 | |
|         return histogram<int>(input, output);
 | |
|     }
 | |
|     if (input->getType() == halide_type_of<uint8_t>()) {
 | |
|         return histogram<uint8_t>(input, output);
 | |
|     }
 | |
|     return NOT_SUPPORT;
 | |
| }
 | |
| 
 | |
| class CPUHistogramCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const {
 | |
|         return new CPUHistogram(backend, op);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUHistogramCreator, OpType_Histogram);
 | |
| } // namespace MNN
 |