mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			314 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			314 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUQuanConvolutionDepthwise.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/10/23.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #ifdef MNN_SUPPORT_DEPRECATED_OP
 | |
| #include "backend/cpu/CPUQuanConvolutionDepthwise.hpp"
 | |
| #include "backend/cpu/CPUFixedPoint.hpp"
 | |
| #include "backend/cpu/CPUQuantizationUtils.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "core/Concurrency.h"
 | |
| #include "core/Macro.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| #define UNIT 4
 | |
| extern "C" {
 | |
| void MNNConvRunForUnitDepthWiseUint8(uint8_t* dst, const int16_t* src, const int16_t* weight, size_t fw, size_t fh,
 | |
|                                      const MNN::ConstConvolutionParameter* parameter, const int32_t* biasData);
 | |
| void MNNConvRunForLineDepthWiseUint8(uint8_t* dst, const int16_t* src, const int16_t* weight, size_t width,
 | |
|                                      MNN::ConstConvolutionParameter* parameters, const int32_t* biasData);
 | |
| }
 | |
| 
 | |
| struct MNN::ConstConvolutionParameter {
 | |
|     size_t kw;
 | |
|     size_t kh;
 | |
|     size_t weightYStep;
 | |
|     size_t dilateXStep;
 | |
|     size_t dilateYStep;
 | |
|     size_t strideXStep;
 | |
|     int32_t outputMultiplier;
 | |
|     int32_t outputShiftBefore;
 | |
|     int32_t outputShiftAfter;
 | |
|     int32_t outputOffset;
 | |
|     int32_t outputActivationMin;
 | |
|     int32_t outputActivationMax;
 | |
| };
 | |
| 
 | |
| #ifndef MNN_USE_NEON
 | |
| void MNNConvRunForUnitDepthWiseUint8(uint8_t* dst, const int16_t* src, const int16_t* weight, size_t fw, size_t fh,
 | |
|                                      const MNN::ConstConvolutionParameter* parameter, const int32_t* biasData) {
 | |
|     int fx, fy;
 | |
|     int dstTemp[UNIT];
 | |
|     for (int i = 0; i < UNIT; ++i) {
 | |
|         dstTemp[i] = 0;
 | |
|     }
 | |
|     auto dilateYStep       = parameter->dilateYStep / sizeof(int16_t);
 | |
|     auto dilateXStep       = parameter->dilateXStep / sizeof(int16_t);
 | |
|     auto weightYStep       = parameter->weightYStep / sizeof(int16_t);
 | |
|     const int16_t* srcZ    = src;
 | |
|     const int16_t* weightZ = weight;
 | |
|     for (fy = 0; fy < fh; ++fy) {
 | |
|         const int16_t* srcY    = srcZ + fy * dilateYStep;
 | |
|         const int16_t* weightY = weightZ + fy * weightYStep;
 | |
|         for (fx = 0; fx < fw; ++fx) {
 | |
|             const int16_t* weightX = weightY + UNIT * fx;
 | |
|             const int16_t* srcX    = srcY + fx * dilateXStep;
 | |
|             for (int j = 0; j < UNIT; ++j) {
 | |
|                 dstTemp[j] += ((int32_t)srcX[j]) * ((int32_t)weightX[j]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     for (int i = 0; i < UNIT; i++) {
 | |
|         int acc = dstTemp[i] + biasData[i];
 | |
|         acc     = MNN::SaturatingRoundingDoublingHighMul(acc * (1 << parameter->outputShiftBefore),
 | |
|                                                      parameter->outputMultiplier);
 | |
|         acc     = MNN::RoundingDivideByPOT(acc, -parameter->outputShiftAfter);
 | |
|         acc += parameter->outputOffset;
 | |
|         acc    = std::max(acc, parameter->outputActivationMin);
 | |
|         acc    = std::min(acc, parameter->outputActivationMax);
 | |
|         dst[i] = static_cast<uint8_t>(acc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void MNNConvRunForLineDepthWiseUint8(uint8_t* dst, const int16_t* src, const int16_t* weight, size_t width,
 | |
|                                      MNN::ConstConvolutionParameter* parameters, const int32_t* biasData) {
 | |
|     int dx;
 | |
|     for (dx = 0; dx < width; ++dx) {
 | |
|         uint8_t* dstX = dst + dx * UNIT;
 | |
|         auto srcX     = src + dx * parameters->strideXStep / sizeof(int16_t);
 | |
|         MNNConvRunForUnitDepthWiseUint8(dstX, srcX, weight, parameters->kw, parameters->kh, parameters, biasData);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUQuanConvolutionDepthwise::CPUQuanConvolutionDepthwise(Backend* backend, const Op* CPUDepthwiseOp)
 | |
|     : Execution(backend) {
 | |
|     mLayerParam              = CPUDepthwiseOp->main_as_TfQuantizedConv2D();
 | |
|     auto commonParam         = mLayerParam->common();
 | |
|     mPadMode                 = commonParam->padMode();
 | |
|     mStrideH                 = commonParam->strideY();
 | |
|     mStrideW                 = commonParam->strideX();
 | |
|     mDepthMultiplier         = mLayerParam->depthMultiplier();
 | |
|     mFusedActivationFunction = mLayerParam->activationType();
 | |
|     auto layer               = mLayerParam->common();
 | |
|     int kw                   = layer->kernelX();
 | |
|     int kh                   = layer->kernelY();
 | |
|     int outputCount          = commonParam->outputCount();
 | |
|     int depthQuad            = UP_DIV(outputCount, UNIT);
 | |
|     int planeStride          = kw * kh * UNIT;
 | |
| 
 | |
|     const uint8_t* tempWeight = mLayerParam->weight()->data();
 | |
|     int kernelSize            = depthQuad * UNIT * kw * kh;
 | |
|     mBias.reset(ALIGN_UP4(mLayerParam->bias()->size()));
 | |
|     mBias.clear();
 | |
|     ::memcpy(mBias.get(), mLayerParam->bias()->data(), mLayerParam->bias()->size() * sizeof(int32_t));
 | |
| 
 | |
|     mWeight.reset(kernelSize);
 | |
|     mWeight.clear();
 | |
|     auto weight       = mWeight.get();
 | |
|     auto filterOffset = mLayerParam->filterQuantizedParam()->zeroPoint();
 | |
|     for (int c = 0; c < outputCount; c++) {
 | |
|         int plane  = c / UNIT;
 | |
|         int offset = c % UNIT;
 | |
|         for (int i = 0; i < kh * kw; i++) {
 | |
|             int16_t* dst = weight + plane * planeStride + offset + i * UNIT;
 | |
|             *dst         = (int16_t)((int32_t)tempWeight[i * outputCount + c] - filterOffset);
 | |
|         }
 | |
|     }
 | |
|     mConstParameter = new ConstConvolutionParameter;
 | |
| }
 | |
| 
 | |
| CPUQuanConvolutionDepthwise::~CPUQuanConvolutionDepthwise() {
 | |
|     delete mConstParameter;
 | |
| }
 | |
| 
 | |
| inline int ComputePadding(int stride, int dilationRate, int inSize, int filterSize, int outSize) {
 | |
|     int effectiveFilterSize = (filterSize - 1) * dilationRate + 1;
 | |
|     int padding             = ((outSize - 1) * stride + effectiveFilterSize - inSize) / 2;
 | |
|     return padding > 0 ? padding : 0;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUQuanConvolutionDepthwise::onResize(const std::vector<Tensor*>& inputs,
 | |
|                                                 const std::vector<Tensor*>& outputs) {
 | |
|     auto input       = inputs[0];
 | |
|     auto inputWidth  = input->width();
 | |
|     auto inputHeight = input->height();
 | |
| 
 | |
|     auto common              = mLayerParam->common();
 | |
|     mFusedActivationFunction = mLayerParam->activationType();
 | |
| 
 | |
|     int threadNumber                = std::max(((CPUBackend*)backend())->threadNumber(), 1);
 | |
|     mTempBuffer.buffer().type       = halide_type_of<int16_t>();
 | |
|     mTempBuffer.buffer().dimensions = 4;
 | |
|     mTempBuffer.setLength(0, threadNumber);
 | |
|     mTempBuffer.setLength(1, inputHeight);
 | |
|     mTempBuffer.setLength(2, inputWidth);
 | |
|     mTempBuffer.setLength(3, UNIT);
 | |
|     TensorUtils::setLinearLayout(&mTempBuffer);
 | |
| 
 | |
|     bool res = backend()->onAcquireBuffer(&mTempBuffer, Backend::DYNAMIC);
 | |
|     if (!res) {
 | |
|         return OUT_OF_MEMORY;
 | |
|     }
 | |
|     backend()->onReleaseBuffer(&mTempBuffer, Backend::DYNAMIC);
 | |
| 
 | |
|     mConstParameter->dilateXStep = common->dilateX() * UNIT * sizeof(int16_t);
 | |
|     mConstParameter->dilateYStep = common->dilateY() * inputWidth * UNIT * sizeof(int16_t);
 | |
|     mConstParameter->strideXStep = common->strideX() * UNIT * sizeof(int16_t);
 | |
|     mConstParameter->kh          = common->kernelY();
 | |
|     mConstParameter->kw          = common->kernelX();
 | |
|     mConstParameter->weightYStep = sizeof(int16_t) * common->kernelX() * UNIT;
 | |
|     float inputScale             = mLayerParam->inputQuantizedParam()->scale();
 | |
|     float filterScale            = mLayerParam->filterQuantizedParam()->scale();
 | |
|     {
 | |
|         double realMultiplier          = 0.0;
 | |
|         const double inputProductScale = inputScale * filterScale;
 | |
|         const double outputScale       = mLayerParam->outputQuantizedParam()->scale();
 | |
|         realMultiplier                 = inputProductScale / outputScale;
 | |
| 
 | |
|         int exponent;
 | |
|         QuantizeMultiplier(realMultiplier, &mConstParameter->outputMultiplier, &exponent);
 | |
|         if (exponent < 0) {
 | |
|             mConstParameter->outputShiftBefore = 0;
 | |
|             mConstParameter->outputShiftAfter  = exponent;
 | |
|         } else {
 | |
|             mConstParameter->outputShiftBefore = exponent;
 | |
|             mConstParameter->outputShiftAfter  = 0;
 | |
|         }
 | |
|         CalculateActivationRangeUint8(mFusedActivationFunction, mLayerParam->outputQuantizedParam()->zeroPoint(),
 | |
|                                       mLayerParam->outputQuantizedParam()->scale(),
 | |
|                                       &mConstParameter->outputActivationMin, &mConstParameter->outputActivationMax);
 | |
|         mConstParameter->outputOffset = mLayerParam->outputQuantizedParam()->zeroPoint();
 | |
|     }
 | |
|     mDilateX   = mLayerParam->common()->dilateX();
 | |
|     mDilateY   = mLayerParam->common()->dilateY();
 | |
|     mZeroPoint = mLayerParam->inputQuantizedParam()->zeroPoint();
 | |
| 
 | |
|     const int outputWidth  = outputs[0]->width();
 | |
|     const int outputHeight = outputs[0]->height();
 | |
| 
 | |
|     int filterHeight = (int)mConstParameter->kh;
 | |
|     int filterWidth  = (int)mConstParameter->kw;
 | |
| 
 | |
|     mPaddingHeight = ComputePadding(mStrideH, 1, inputHeight, filterHeight, outputHeight);
 | |
|     mPaddingWidth  = ComputePadding(mStrideW, 1, inputWidth, filterWidth, outputWidth);
 | |
| 
 | |
|     // Compute Mid Rect
 | |
|     ml = 0; mt = 0; mr = outputWidth; mb = outputHeight;
 | |
|     for (; ml * mStrideW - mPaddingWidth < 0 && ml < outputWidth; ml++) {
 | |
|         // do nothing
 | |
|     }
 | |
|     for (; mt * mStrideH - mPaddingHeight < 0 && mt < outputHeight; mt++) {
 | |
|         // do nothing
 | |
|     }
 | |
|     for (; (mr - 1) * mStrideW - mPaddingWidth + (filterWidth - 1) * mDilateX >= inputWidth && mr > ml; mr--) {
 | |
|         // do nothing
 | |
|     }
 | |
|     for (; (mb - 1) * mStrideH - mPaddingHeight + (filterHeight - 1) * mDilateY >= inputHeight && mb > mt; mb--) {
 | |
|         // do nothing
 | |
|     }
 | |
| 
 | |
|     mDstYStep    = outputWidth * UNIT;
 | |
|     mSrcYStep    = inputWidth * UNIT;
 | |
|     mWeightZStep = filterHeight * filterWidth * UNIT;
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUQuanConvolutionDepthwise::onExecute(const std::vector<Tensor*>& inputs,
 | |
|                                                  const std::vector<Tensor*>& outputs) {
 | |
|     const Tensor* input = inputs[0];
 | |
|     Tensor* output      = outputs[0];
 | |
| 
 | |
|     const int outputBatch  = outputs[0]->batch();
 | |
|     const int outputWidth  = outputs[0]->width();
 | |
|     const int outputHeight = outputs[0]->height();
 | |
| 
 | |
|     const int inputHeight  = inputs[0]->height();
 | |
|     const int inputWidth   = inputs[0]->width();
 | |
|     const int inputChannel = inputs[0]->channel();
 | |
| 
 | |
|     int filterHeight = (int)mConstParameter->kh;
 | |
|     int filterWidth  = (int)mConstParameter->kw;
 | |
| 
 | |
|     auto bias = mBias.get();
 | |
| 
 | |
|     auto runBasic = [&](uint8_t* dstZ, const int16_t* srcZ, const int16_t* weightDZ, int L, int T, int R, int B,
 | |
|                         const int32_t* biasData) {
 | |
|         for (int dy = T; dy < B; ++dy) {
 | |
|             uint8_t* dstY = dstZ + dy * mDstYStep;
 | |
|             int srcStartY = dy * mStrideH - mPaddingHeight;
 | |
|             int sfy       = ALIMAX(0, (UP_DIV(-srcStartY, mDilateY)));
 | |
|             int efy       = ALIMIN(filterHeight, UP_DIV(inputHeight - srcStartY, mDilateY));
 | |
|             auto srcDY    = srcZ + (srcStartY + sfy * mDilateY) * mSrcYStep;
 | |
|             auto weightDY = weightDZ + sfy * filterWidth * UNIT;
 | |
|             for (int dx = L; dx < R; ++dx) {
 | |
|                 uint8_t* dstX = dstY + UNIT * dx;
 | |
|                 int srcStartX = dx * mStrideW - mPaddingWidth;
 | |
|                 auto srcDX    = srcDY + srcStartX * UNIT;
 | |
|                 int sfx       = ALIMAX(0, (UP_DIV(-srcStartX, mDilateX)));
 | |
|                 int efx       = ALIMIN(filterWidth, UP_DIV(inputWidth - srcStartX, mDilateX));
 | |
| 
 | |
|                 MNNConvRunForUnitDepthWiseUint8(dstX, srcDX + (sfx * mDilateX) * UNIT, weightDY + UNIT * sfx,
 | |
|                                                 efx - sfx, efy - sfy, mConstParameter, biasData);
 | |
|             }
 | |
|         }
 | |
|     };
 | |
|     int icDiv4       = UP_DIV(inputChannel, 4);
 | |
|     int threadNumber = std::max(((CPUBackend*)backend())->threadNumber(), 1);
 | |
|     threadNumber     = std::min(threadNumber, icDiv4);
 | |
|     for (int batchIndex = 0; batchIndex < outputBatch; ++batchIndex) {
 | |
|         const uint8_t* srcOrigin = input->host<uint8_t>() + batchIndex * input->stride(0);
 | |
|         auto dstOrigin           = output->host<uint8_t>() + batchIndex * output->stride(0);
 | |
|         MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
 | |
|             auto colBuffer = mTempBuffer.host<int16_t>() + mTempBuffer.stride(0) * tId;
 | |
|             for (int z = (int)tId; z < icDiv4; z += threadNumber) {
 | |
|                 auto srcZ = srcOrigin + z * inputWidth * inputHeight * UNIT;
 | |
|                 MNNUInt8ToInt16WithOffsetC4Fast(colBuffer, srcZ, mZeroPoint, inputHeight * inputWidth, 1, 0, 0);
 | |
|                 const int32_t* curBiasPtr = bias + z * UNIT;
 | |
|                 uint8_t* dstZ             = dstOrigin + z * outputWidth * outputHeight * UNIT;
 | |
| 
 | |
|                 const int16_t* weightDZ = mWeight.get() + z * mWeightZStep;
 | |
| 
 | |
|                 runBasic(dstZ, colBuffer, weightDZ, 0, 0, outputWidth, mt, curBiasPtr);
 | |
|                 runBasic(dstZ, colBuffer, weightDZ, 0, mb, outputWidth, outputHeight, curBiasPtr);
 | |
|                 runBasic(dstZ, colBuffer, weightDZ, 0, mt, ml, mb, curBiasPtr);
 | |
|                 runBasic(dstZ, colBuffer, weightDZ, mr, mt, outputWidth, mb, curBiasPtr);
 | |
| 
 | |
|                 if (mr > ml) {
 | |
|                     for (int dy = mt; dy < mb; ++dy) {
 | |
|                         uint8_t* dstY        = dstZ + dy * mDstYStep;
 | |
|                         int srcStartY        = dy * mStrideH - mPaddingHeight;
 | |
|                         const int16_t* srcDY = colBuffer + srcStartY * mSrcYStep;
 | |
| 
 | |
|                         MNNConvRunForLineDepthWiseUint8(dstY + ml * UNIT, srcDY + (ml * mStrideW - mPaddingWidth) * UNIT,
 | |
|                                                         weightDZ, mr - ml, mConstParameter, curBiasPtr);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         MNN_CONCURRENCY_END();
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUDepthwiseCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const {
 | |
|         return new CPUQuanConvolutionDepthwise(backend, op);
 | |
|     }
 | |
| };
 | |
| } // namespace MNN
 | |
| #endif
 | |
| namespace MNN {
 | |
| REGISTER_CPU_OP_CREATOR_OLD(CPUDepthwiseCreator, OpType_QuantizedDepthwiseConv2D);
 | |
| };
 |