mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			84 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			84 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPURandomUniform.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2020/8/14.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <random>
 | |
| #include "backend/cpu/CPURandomUniform.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| ErrorCode CPURandomUniform::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPURandomUniform::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     MNN_ASSERT(outputs.size() == 1);
 | |
|     auto output = outputs[0];
 | |
|     int size = output->elementSize();
 | |
|     auto parameter = mOp->main_as_RandomUniform();
 | |
|     auto outputPtr = output->host<float>();
 | |
|     std::uniform_real_distribution<float> distribution(parameter->low(),parameter->high());
 | |
|     int seed = parameter->seed();
 | |
|     int seed1 = parameter->seed2();
 | |
|     if (seed || seed1) {
 | |
|         std::mt19937 generator(seed || seed1);
 | |
|         for (int i = 0; i < size; i++) {
 | |
|             outputPtr[i] = distribution(generator);
 | |
|         }
 | |
|     } else {
 | |
|         std::default_random_engine generator;
 | |
|         for (int i = 0; i < size; i++) {
 | |
|             outputPtr[i] = distribution(generator);
 | |
|         }
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPURandomNormal::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPURandomNormal::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     MNN_ASSERT(outputs.size() == 1);
 | |
|     auto output = outputs[0];
 | |
|     int size = output->elementSize();
 | |
|     auto parameter = mOp->main_as_RandomUniform();
 | |
|     auto outputPtr = output->host<float>();
 | |
|     // RandomUniform and RandomNormal use same param table. low -> mean, high -> scale
 | |
|     std::normal_distribution<float> distribution(parameter->low(),parameter->high());
 | |
|     int seed = parameter->seed();
 | |
|     int seed1 = parameter->seed2();
 | |
|     if (seed || seed1) {
 | |
|         std::mt19937 generator(seed || seed1);
 | |
|         for (int i = 0; i < size; i++) {
 | |
|             outputPtr[i] = distribution(generator);
 | |
|         }
 | |
|     } else {
 | |
|         std::default_random_engine generator;
 | |
|         for (int i = 0; i < size; i++) {
 | |
|             outputPtr[i] = distribution(generator);
 | |
|         }
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPURandomCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const override {
 | |
|         if (op->type() == OpType_RandomUniform) {
 | |
|             return new CPURandomUniform(backend, op);
 | |
|         } else {
 | |
|             return new CPURandomNormal(backend, op);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| REGISTER_CPU_OP_CREATOR(CPURandomCreator, OpType_RandomUniform);
 | |
| REGISTER_CPU_OP_CREATOR(CPURandomCreator, OpType_RandomNormal);
 | |
| } // namespace MNN
 |