mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			281 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPURelu.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/07/15.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include <string.h>
 | |
| #include "backend/cpu/CPURelu.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "core/Macro.h"
 | |
| #include "core/Concurrency.h"
 | |
| #include "CPUBackend.hpp"
 | |
| #include "core/TensorUtils.hpp"
 | |
| namespace MNN {
 | |
| CPURelu::CPURelu(Backend *b, float slope) : Execution(b) {
 | |
|     auto core = static_cast<CPUBackend*>(b)->functions();
 | |
|     mSlope.reset(core->bytes * core->pack);
 | |
|     if (core->bytes < 4) {
 | |
|         // For Lowp
 | |
|         std::vector<float> tempSlope(core->pack);
 | |
|         for (int i=0; i<core->pack; ++i) {
 | |
|             tempSlope[i] = slope;
 | |
|         }
 | |
|         core->MNNFp32ToLowp(tempSlope.data(), (int16_t*)mSlope.get(), core->pack);
 | |
|     } else {
 | |
|         for (int i=0; i<core->pack; ++i) {
 | |
|             ((float*)mSlope.get())[i] = slope;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| ErrorCode CPURelu::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto core = static_cast<CPUBackend*>(backend())->functions();
 | |
|     mRealSize = static_cast<CPUBackend*>(backend())->getTensorSize(inputs[0]);
 | |
|     if (mRealSize % core->pack != 0) {
 | |
|         mCacheDst.reset(core->pack * core->bytes);
 | |
|         mCacheSrc.reset(core->pack * core->bytes);
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPURelu::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto& ib = inputs[0]->buffer();
 | |
|     auto& ob = outputs[0]->buffer();
 | |
| 
 | |
|     if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
 | |
|         const int8_t* srcO = (const int8_t*)ib.host;
 | |
|         auto inInfo = TensorUtils::getQuantInfo(inputs[0]);
 | |
|         auto outInfo = TensorUtils::getQuantInfo(outputs[0]);
 | |
|         if (inInfo != outInfo) {
 | |
|             MNN_PRINT("this relu int8 implementation has error when input output quant info mismatch\n");
 | |
|         }
 | |
|         int8_t zeroPoint = int8_t(outInfo[1]);
 | |
|         int8_t* dstO       = (int8_t*)ob.host;
 | |
|         auto size         = mRealSize;
 | |
|         auto numberThread = ((CPUBackend*)backend())->threadNumber();
 | |
|         int sizeQuad     = size / 16;
 | |
|         int remain       = sizeQuad * 16;
 | |
|         int sizeDivide = sizeQuad / numberThread;
 | |
|         if (sizeQuad > 0) {
 | |
|             MNN_CONCURRENCY_BEGIN(tId, numberThread) {
 | |
|                 int number = sizeDivide;
 | |
|                 if (tId == numberThread - 1) {
 | |
|                     number = sizeQuad - tId * sizeDivide;
 | |
|                 }
 | |
|                 MNNReluInt8(dstO + 16 * tId * sizeDivide, srcO + 16 * tId * sizeDivide, number * 16, zeroPoint);
 | |
|             }
 | |
|             MNN_CONCURRENCY_END();
 | |
|         }
 | |
|         for (int i = remain; i < size; i++) {
 | |
|             dstO[i] = srcO[i] > zeroPoint ? srcO[i] : zeroPoint;
 | |
|         }
 | |
|         return NO_ERROR;
 | |
|     }
 | |
|     auto core = static_cast<CPUBackend*>(backend())->functions();
 | |
|     const uint8_t* srcO = (const uint8_t*)ib.host;
 | |
|     uint8_t* dstO       = (uint8_t*)ob.host;
 | |
|     auto size         = mRealSize;
 | |
|     auto numberThread = ((CPUBackend*)backend())->threadNumber();
 | |
|     int sizeQuad     = size / core->pack;
 | |
|     int remain       = size % core->pack;
 | |
|     int sizeDivide = sizeQuad / numberThread;
 | |
|     if (sizeQuad > 0) {
 | |
|         MNN_CONCURRENCY_BEGIN(tId, numberThread) {
 | |
|             int number = sizeDivide;
 | |
|             if (tId == numberThread - 1) {
 | |
|                 number = sizeQuad - tId * sizeDivide;
 | |
|             }
 | |
|             core->MNNReluWithSlopeChannel((float*)(dstO + core->pack * core->bytes * tId * sizeDivide), (const float*)(srcO + core->pack * core->bytes * tId * sizeDivide), (const float*)mSlope.get(), number, 1);
 | |
|         }
 | |
|         MNN_CONCURRENCY_END();
 | |
|     }
 | |
|     if (remain > 0) {
 | |
|         ::memcpy(mCacheSrc.get(), srcO + sizeQuad * core->pack * core->bytes, remain * core->bytes);
 | |
|         core->MNNReluWithSlopeChannel((float*)(mCacheDst.get()), (const float*)(mCacheSrc.get()), (const float*)mSlope.get(), 1, 1);
 | |
|         ::memcpy(dstO + sizeQuad * core->pack * core->bytes, mCacheDst.get(), remain * core->bytes);
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPURelu6::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto core = static_cast<CPUBackend*>(backend())->functions();
 | |
|     mRealSize = static_cast<CPUBackend*>(backend())->getTensorSize(inputs[0]);
 | |
|     if (mRealSize % core->pack != 0) {
 | |
|         mCacheDst.reset(core->pack * core->bytes);
 | |
|         mCacheSrc.reset(core->pack * core->bytes);
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPURelu6::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto& ib = inputs[0]->buffer();
 | |
|     auto& ob = outputs[0]->buffer();
 | |
|     auto core = static_cast<CPUBackend*>(backend())->functions();
 | |
|     const uint8_t* srcO = (const uint8_t*)ib.host;
 | |
|     uint8_t* dstO       = (uint8_t*)ob.host;
 | |
|     auto size         = mRealSize;
 | |
|     auto numberThread = ((CPUBackend*)backend())->threadNumber();
 | |
|     int sizeQuad     = size / core->pack;
 | |
|     int remain       = size % core->pack;
 | |
|     int sizeDivide = sizeQuad / numberThread;
 | |
|     std::vector<uint8_t> bias(core->pack * core->bytes, 0);
 | |
|     auto biasPtr = (float*)bias.data();
 | |
|     if (sizeQuad > 0) {
 | |
|         MNN_CONCURRENCY_BEGIN(tId, numberThread) {
 | |
|             int number = sizeDivide;
 | |
|             if (tId == numberThread - 1) {
 | |
|                 number = sizeQuad - tId * sizeDivide;
 | |
|             }
 | |
|             core->MNNAxByClampBroadcastUnit((float*)(dstO + core->pack * core->bytes * tId * sizeDivide), (const float*)(srcO + core->pack * core->bytes * tId * sizeDivide), biasPtr, number, 0, 0, 1, mParam.data());
 | |
|         }
 | |
|         MNN_CONCURRENCY_END();
 | |
|     }
 | |
|     if (remain > 0) {
 | |
|         ::memcpy(mCacheSrc.get(), srcO + sizeQuad * core->pack * core->bytes, remain * core->bytes);
 | |
|         core->MNNAxByClampBroadcastUnit((float*)(mCacheDst.get()), (const float*)(mCacheSrc.get()), biasPtr, 1, 0, 0, 1, mParam.data());
 | |
|         ::memcpy(dstO + sizeQuad * core->pack * core->bytes, mCacheDst.get(), remain * core->bytes);
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| CPUPRelu::CPUPRelu(Backend* b, const Op* op) : MNN::Execution(b) {
 | |
|     auto c = op->main_as_PRelu();
 | |
|     auto core = static_cast<CPUBackend*>(b)->functions();
 | |
|     mSlope.buffer().dimensions = 1;
 | |
|     mSlope.buffer().dim[0].extent = UP_DIV(c->slopeCount(), core->pack) * core->pack;
 | |
|     mValid = b->onAcquireBuffer(&mSlope, Backend::STATIC);
 | |
|     if (!mValid) {
 | |
|         return;
 | |
|     }
 | |
|     ::memset(mSlope.host<void>(), 0, mSlope.length(0) * core->bytes);
 | |
|     if (core->bytes < 4) {
 | |
|         // For Lowp
 | |
|         core->MNNFp32ToLowp(c->slope()->data(), mSlope.host<int16_t>(), c->slopeCount());
 | |
|     } else {
 | |
|         ::memcpy(mSlope.host<void>(), c->slope()->data(), c->slopeCount() * sizeof(float));
 | |
|     }
 | |
| }
 | |
| CPUPRelu::~CPUPRelu() {
 | |
|     if (mValid) {
 | |
|         backend()->onReleaseBuffer(&mSlope, Backend::STATIC);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ErrorCode CPUPRelu::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto core = static_cast<CPUBackend*>(backend())->functions();
 | |
|     if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
 | |
|         mUseInt8 = 1;
 | |
|         float inputScale = TensorUtils::getDescribe(inputs[0])->quantAttr->scale;
 | |
|         float outputScale = TensorUtils::getDescribe(outputs[0])->quantAttr->scale;
 | |
|         if (outputScale == 0) {
 | |
|             outputScale = 0;
 | |
|         } else {
 | |
|             outputScale = 1.0f / outputScale;
 | |
|         }
 | |
|         ssize_t inputZero = static_cast<ssize_t>(TensorUtils::getDescribe(inputs[0])->quantAttr->zero);
 | |
|         ssize_t outputZero = static_cast<ssize_t>(TensorUtils::getDescribe(outputs[0])->quantAttr->zero);
 | |
|         ssize_t maxValue = static_cast<ssize_t>(TensorUtils::getDescribe(inputs[0])->quantAttr->max);
 | |
|         ssize_t minValue = static_cast<ssize_t>(TensorUtils::getDescribe(inputs[0])->quantAttr->min);
 | |
|         mQuanScalesInput.resize(1);
 | |
|         mQuanScalesOutput.resize(1);
 | |
|         mQuanZerosInput.resize(1);
 | |
|         mQuanZerosOutput.resize(1);
 | |
|         mQuanScalesInput = {inputScale};
 | |
|         mQuanScalesOutput = {outputScale};
 | |
|         mQuanZerosInput = {inputZero};
 | |
|         mQuanZerosOutput = {outputZero};
 | |
|         auto p = mSlope.host<float>();
 | |
|         for (int i = 0; i < mSlope.buffer().dim[0].extent; ++i) {
 | |
|             p[i] = p[i] * inputScale * outputScale;
 | |
|         }
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUPRelu::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto& ib            = inputs[0]->buffer();
 | |
|     auto& ob            = outputs[0]->buffer();
 | |
|     int sizeQuad = 1;
 | |
|     for (int i=2; i<ib.dimensions; ++i) {
 | |
|         sizeQuad *= ib.dim[i].extent;
 | |
|     }
 | |
|     auto core = static_cast<CPUBackend*>(backend())->functions();
 | |
|     auto coreInt8 = static_cast<CPUBackend*>(backend())->int8Functions();
 | |
|     const int channel   = ib.dim[1].extent;
 | |
|     const int batch     = ib.dim[0].extent;
 | |
|     int pack = 4;
 | |
|     int depthQuad = UP_DIV(channel, core->pack);
 | |
|     const uint8_t* srcO   = (const uint8_t*)ib.host;
 | |
|     uint8_t* dstO         = (uint8_t*)ob.host;
 | |
|     auto totalCount = batch * depthQuad;
 | |
|     auto numberThread = ((CPUBackend*)backend())->threadNumber();
 | |
|     if (mUseInt8) {
 | |
|         depthQuad = UP_DIV(channel, pack);
 | |
|         MNN_CONCURRENCY_BEGIN(tId, numberThread) {
 | |
|             QuanPrePostParameters params;
 | |
|             params.maxValue = static_cast<ssize_t>(TensorUtils::getDescribe(inputs[0])->quantAttr->max);
 | |
|             params.minValue = static_cast<ssize_t>(TensorUtils::getDescribe(inputs[0])->quantAttr->min);
 | |
|             params.inputScale = mQuanScalesInput.data();
 | |
|             params.inputZeroPoint = mQuanZerosInput.data();
 | |
|             params.outputScale = mQuanScalesOutput.data();
 | |
|             params.outputZeroPoint = mQuanZerosOutput.data();
 | |
|             for (int b=tId; b<totalCount; b+=numberThread) {
 | |
|                 auto c = b / batch;
 | |
|                 coreInt8->MNNReluWithSlopeChannelInt8((int8_t*)(dstO + sizeQuad * pack * b), (const int8_t*)(srcO + sizeQuad * pack * b), (const float*)(mSlope.host<uint8_t>() + core->bytes * pack * c), sizeQuad, 1, ¶ms);
 | |
|             }
 | |
|         }
 | |
|         MNN_CONCURRENCY_END();
 | |
|         return NO_ERROR;
 | |
|     }
 | |
|     MNN_CONCURRENCY_BEGIN(tId, numberThread) {
 | |
|         for (int b=tId; b<totalCount; b+=numberThread) {
 | |
|             auto c = b / batch;
 | |
|             core->MNNReluWithSlopeChannel((float*)(dstO + sizeQuad * core->bytes * core->pack * b), (const float*)(srcO + sizeQuad * core->pack * core->bytes * b), (const float*)(mSlope.host<uint8_t>() + core->bytes * core->pack * c), sizeQuad, 1);
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUReluCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const {
 | |
|         if (op->type() == OpType_ReLU) {
 | |
|             auto slope = 0.0f;
 | |
|             if (nullptr != op->main() && OpParameter_Relu == op->main_type()) {
 | |
|                 slope = op->main_as_Relu()->slope();
 | |
|             }
 | |
|             return new CPURelu(backend, slope);
 | |
|         }
 | |
|         MNN_ASSERT(op->type() == OpType_PReLU);
 | |
|         if (op->main_as_PRelu()->slopeCount() == 1) {
 | |
|             return new CPURelu(backend, op->main_as_PRelu()->slope()->data()[0]);
 | |
|         }
 | |
|         return new CPUPRelu(backend, op);
 | |
|     }
 | |
| };
 | |
| 
 | |
| class CPURelu6Creator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const {
 | |
|         float minV = 0.0f;
 | |
|         float maxV = 6.0f;
 | |
|         if (nullptr != op->main()) {
 | |
|             auto p = op->main_as_Relu6();
 | |
|             minV = p->minValue();
 | |
|             maxV = p->maxValue();
 | |
|         }
 | |
|         return new CPURelu6(maxV, minV, backend);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUReluCreator, OpType_ReLU);
 | |
| REGISTER_CPU_OP_CREATOR(CPUReluCreator, OpType_PReLU);
 | |
| REGISTER_CPU_OP_CREATOR(CPURelu6Creator, OpType_ReLU6);
 | |
| } // namespace MNN
 |