mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			490 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			490 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUTFQuantizedConv2D.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/08/02.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #ifdef MNN_SUPPORT_DEPRECATED_OP
 | |
| #include "backend/cpu/CPUTFQuantizedConv2D.hpp"
 | |
| #include <math.h>
 | |
| #include "backend/cpu/CPUFixedPoint.hpp"
 | |
| #include "backend/cpu/CPUQuantizationUtils.hpp"
 | |
| #include "backend/cpu/compute/CommonOptFunction.h"
 | |
| #include "core/Concurrency.h"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| #ifdef MNN_USE_NEON
 | |
| #include <arm_neon.h>
 | |
| #endif
 | |
| 
 | |
| #define UNIT 4
 | |
| #define SRC_UNIT 16
 | |
| 
 | |
| //SRC_UNIT/UNIT
 | |
| #define SRC_C4_UNIT 4
 | |
| 
 | |
| // ugly macro compatible with MNNGemmInt8ToFloat32_XX
 | |
| #ifdef DST_XUNIT
 | |
| #undef DST_XUNIT
 | |
| #endif
 | |
| // One Tile Compute DST_XUNIT * outputChannel 's number
 | |
| #ifdef __aarch64__
 | |
| #define DST_XUNIT 4
 | |
| #else
 | |
| #define DST_XUNIT 2
 | |
| #endif
 | |
| 
 | |
| extern "C" {
 | |
| void MNNQuanToDestUint8(uint8_t* outputInTile, const int32_t* gemmOutputAddr, const int32_t* biasData, size_t ocUnit,
 | |
|                         size_t realDstCount, size_t dstZStep, size_t srcZstep,
 | |
|                         const MNN::CPUTFQuantizedConv2D::QuanParameter* parameter);
 | |
| void MNNLoadU8AndSum(int32_t* inputSum, int8_t* colAddr, const uint8_t* inputOrigin, size_t srcZStep, size_t icDiv8,
 | |
|                         size_t realDstCount, size_t mFilterOffset);
 | |
| void MNNGemmint8to32_8x4_Unit(int32_t* dst, const int8_t* src, const int8_t* weight, const int32_t* inputSummer, size_t src_depth_quad,
 | |
|                                   size_t dst_step, size_t dst_depth_quad);
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef MNN_USE_NEON
 | |
| void MNNGemmint8to32_8x4_Unit(int32_t* dst, const int8_t* src, const int8_t* weight, const int32_t* inputSummer, size_t src_depth_quad,
 | |
|                               size_t dst_step, size_t dst_depth_quad) {
 | |
|     for (int dz = 0; dz < dst_depth_quad; ++dz) {
 | |
|         auto weight_dz = weight + src_depth_quad * dz * SRC_UNIT * UNIT;
 | |
|         auto dst_z     = dst + dz * dst_step / sizeof(int32_t);
 | |
|         for (int w = 0; w < DST_XUNIT; ++w) {
 | |
|             auto dst_x = dst_z + 4 * w;
 | |
|             ::memset(dst_x, 0, UNIT * sizeof(int32_t));
 | |
|             auto src_x = src + SRC_UNIT * w;
 | |
|             for (int sz = 0; sz < src_depth_quad; ++sz) {
 | |
|                 auto weight_sz = weight_dz +SRC_UNIT * UNIT * sz;
 | |
|                 auto src_z     = src_x + sz * DST_XUNIT * SRC_UNIT;
 | |
|                 for (int j = 0; j < UNIT; ++j) {
 | |
|                     auto weight_j = weight_sz + j * SRC_UNIT;
 | |
|                     for (int i = 0; i < SRC_UNIT; ++i) {
 | |
|                         auto s0 = (int32_t)(src_z[i+0]);
 | |
|                         auto s1 = (int32_t)(weight_j[i+0]);
 | |
|                         dst_x[j] += s0 * s1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             for (int j = 0; j < UNIT; ++j) {
 | |
|                 dst_x[j] -= inputSummer[w];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void MNNLoadU8AndSum(int32_t* inputSum, int8_t* colAddr, const uint8_t* inputOrigin, size_t srcZStep, size_t icDiv8,
 | |
|                      size_t realDstCount, size_t mFilterOffset) {
 | |
|     for (int i = 0; i < realDstCount; ++i) {
 | |
|         inputSum[i]   = 0;
 | |
|         auto colAddrI = colAddr + SRC_UNIT * i;
 | |
|         auto inputK   = inputOrigin + UNIT * i;
 | |
|         for (int sz = 0; sz < icDiv8; ++sz) {
 | |
|             auto inputZ0      = inputK + srcZStep * (SRC_C4_UNIT * sz + 0);
 | |
|             auto inputZ1      = inputK + srcZStep * (SRC_C4_UNIT * sz + 1);
 | |
|             auto inputZ2      = inputK + srcZStep * (SRC_C4_UNIT * sz + 2);
 | |
|             auto inputZ3      = inputK + srcZStep * (SRC_C4_UNIT * sz + 3);
 | |
|             auto indexOutside = sz;
 | |
| 
 | |
|             auto dstK0 = colAddrI + indexOutside * SRC_UNIT * DST_XUNIT;
 | |
|             auto dstK1 = dstK0 + UNIT;
 | |
|             auto dstK2 = dstK1 + UNIT;
 | |
|             auto dstK3 = dstK2 + UNIT;
 | |
|             for (int u = 0; u < UNIT; ++u) {
 | |
|                 dstK0[u] = (int)inputZ0[u] - 128;
 | |
|                 dstK1[u] = (int)inputZ1[u] - 128;
 | |
|                 dstK2[u] = (int)inputZ2[u] - 128;
 | |
|                 dstK3[u] = (int)inputZ3[u] - 128;
 | |
|                 inputSum[i] += ((int32_t)dstK0[u] + (int32_t)dstK1[u] + (int32_t)dstK2[u] + (int32_t)dstK3[u]) * mFilterOffset;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void MNNQuanToDestUint8(uint8_t* outputInTile, const int32_t* gemmOutputAddr, const int32_t* biasData, size_t ocUnit,
 | |
|                         size_t realDstCount, size_t dstZStep, size_t srcZstep,
 | |
|                         const MNN::CPUTFQuantizedConv2D::QuanParameter* parameter) {
 | |
|     dstZStep = dstZStep / sizeof(uint8_t);
 | |
|     srcZstep = srcZstep / sizeof(int32_t);
 | |
|     for (int dz = 0; dz < ocUnit; ++dz) {
 | |
|         auto dstZ  = outputInTile + dz * dstZStep;
 | |
|         auto srcZ  = gemmOutputAddr + dz * srcZstep;
 | |
|         auto biasZ = biasData + dz * UNIT;
 | |
|         for (int x = 0; x < realDstCount; ++x) {
 | |
|             auto dstX = dstZ + x * UNIT;
 | |
|             auto srcX = srcZ + x * UNIT;
 | |
|             for (int i = 0; i < UNIT; i++) {
 | |
|                 int result = srcX[i];
 | |
|                 int acc    = result + biasZ[i];
 | |
|                 acc        = MNN::RoundingDivideByPOT(
 | |
|                     MNN::SaturatingRoundingDoublingHighMul(acc * (1 << parameter->mOutputShiftBefore),
 | |
|                                                            parameter->mOutputMultiplier),
 | |
|                     -parameter->mOutputShiftAfter);
 | |
|                 acc += parameter->mOutputOffset;
 | |
|                 acc     = std::max(acc, parameter->mOutputActivationMin);
 | |
|                 acc     = std::min(acc, parameter->mOutputActivationMax);
 | |
|                 dstX[i] = static_cast<uint8_t>(acc);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| namespace MNN {
 | |
| 
 | |
| CPUTFQuantizedConv2D::CPUTFQuantizedConv2D(Backend* backend, const Op* TFQuantizedConv2DOp) : Execution(backend) {
 | |
|     mTfQuantizedConv2D_param = TFQuantizedConv2DOp->main_as_TfQuantizedConv2D();
 | |
| 
 | |
|     // Input filter is of the following dimensions:
 | |
|     // [ filter_rows, filter_cols, in_depth, out_depth]
 | |
|     auto outputChannel               = mTfQuantizedConv2D_param->common()->outputCount();
 | |
|     auto kx                          = mTfQuantizedConv2D_param->common()->kernelX();
 | |
|     auto ky                          = mTfQuantizedConv2D_param->common()->kernelY();
 | |
|     int inputChannel                 = mTfQuantizedConv2D_param->weight()->size() / outputChannel / kx / ky;
 | |
|     auto outputChannelUnit           = UP_DIV(outputChannel, UNIT);
 | |
|     auto inputChannelUnit            = UP_DIV(inputChannel, UNIT);
 | |
|     mIm2ColParamter                  = new ConvolutionCommon::Im2ColParameter;
 | |
|     mIm2ColParamter->dilateX         = mTfQuantizedConv2D_param->common()->dilateX();
 | |
|     mIm2ColParamter->dilateY         = mTfQuantizedConv2D_param->common()->dilateY();
 | |
|     mIm2ColParamter->strideX         = mTfQuantizedConv2D_param->common()->strideX();
 | |
|     mIm2ColParamter->strideY         = mTfQuantizedConv2D_param->common()->strideY();
 | |
|     mIm2ColParamter->kernelX         = mTfQuantizedConv2D_param->common()->kernelX();
 | |
|     mIm2ColParamter->kernelY         = mTfQuantizedConv2D_param->common()->kernelY();
 | |
|     mIm2ColParamter->padX            = mTfQuantizedConv2D_param->common()->padX();
 | |
|     mIm2ColParamter->padY            = mTfQuantizedConv2D_param->common()->padY();
 | |
|     mIm2ColParamter->icDiv4          = inputChannelUnit;
 | |
|     mIm2ColParamter->kernelCountUnit = UP_DIV(inputChannelUnit * kx * ky, SRC_C4_UNIT);
 | |
| 
 | |
|     mQuanParameter = new QuanParameter;
 | |
| 
 | |
|     float inputScale  = mTfQuantizedConv2D_param->inputQuantizedParam()->scale();
 | |
|     float filterScale = mTfQuantizedConv2D_param->filterQuantizedParam()->scale();
 | |
| 
 | |
|     {
 | |
|         double realMultiplier          = 0.0;
 | |
|         const double inputProductScale = inputScale * filterScale;
 | |
|         const double outputScale       = mTfQuantizedConv2D_param->outputQuantizedParam()->scale();
 | |
| 
 | |
|         MNN_ASSERT(inputProductScale >= 0);
 | |
|         realMultiplier = inputProductScale / outputScale;
 | |
| 
 | |
|         MNN_ASSERT(realMultiplier < 1.0);
 | |
|         int shift = 0;
 | |
|         QuantizeMultiplierSmallerThanOne(realMultiplier, &mQuanParameter->mOutputMultiplier, &shift);
 | |
|         shift = -shift;
 | |
|         if (shift < 0) {
 | |
|             mQuanParameter->mOutputShiftBefore = 0;
 | |
|             mQuanParameter->mOutputShiftAfter  = shift;
 | |
|         } else {
 | |
|             mQuanParameter->mOutputShiftBefore = shift;
 | |
|             mQuanParameter->mOutputShiftAfter  = 0;
 | |
|         }
 | |
| 
 | |
|         mFusedActivationFunction = mTfQuantizedConv2D_param->activationType();
 | |
|         CalculateActivationRangeUint8(mFusedActivationFunction,
 | |
|                                       mTfQuantizedConv2D_param->outputQuantizedParam()->zeroPoint(),
 | |
|                                       mTfQuantizedConv2D_param->outputQuantizedParam()->scale(),
 | |
|                                       &mQuanParameter->mOutputActivationMin, &mQuanParameter->mOutputActivationMax);
 | |
|     }
 | |
|     mQuanParameter->mOutputOffset = mTfQuantizedConv2D_param->outputQuantizedParam()->zeroPoint();
 | |
| 
 | |
|     auto src                = mTfQuantizedConv2D_param->weight()->data();
 | |
|     int32_t offsetFilter    = mTfQuantizedConv2D_param->filterQuantizedParam()->zeroPoint() - 128;
 | |
|     auto totalKernelCountD8 = UP_DIV(inputChannelUnit * kx * ky, SRC_C4_UNIT);
 | |
|     mWeight.reset(Tensor::create<int8_t>(std::vector<int>{outputChannelUnit, totalKernelCountD8, UNIT, SRC_UNIT}));
 | |
|     ::memset(mWeight->host<int8_t>(), (int8_t)offsetFilter, mWeight->size());
 | |
| 
 | |
|     std::shared_ptr<Tensor> mWeightSum;
 | |
|     mWeightSum.reset(Tensor::create<int32_t>(std::vector<int>{outputChannelUnit, 4}));
 | |
|     ::memset(mWeightSum->host<int32_t>(), 0, mWeightSum->size());
 | |
| 
 | |
|     mQuanParameter->mFilterOffset = offsetFilter;
 | |
|     mQuanParameter->mInputOffset  = mTfQuantizedConv2D_param->inputQuantizedParam()->zeroPoint() - 128;
 | |
|     mQuanParameter->mOffsetAdd =
 | |
|         mQuanParameter->mFilterOffset * mQuanParameter->mInputOffset * totalKernelCountD8 * SRC_UNIT;
 | |
|     auto dst        = mWeight->host<int8_t>();
 | |
|     int kernelCount = kx * ky;
 | |
|     auto weightSum  = mWeightSum->host<int32_t>();
 | |
|     for (int i = 0; i < outputChannel; ++i) {
 | |
|         weightSum[i] = (int32_t)offsetFilter * totalKernelCountD8 * SRC_UNIT;
 | |
|     }
 | |
| 
 | |
|     // weight format : hwio -> oc/4, (hw ic/4) / 2, oc4, (hw ic/4) % 2 ic4
 | |
|     for (int k = 0; k < kernelCount; ++k) {
 | |
|         auto srcK = src + k * inputChannel * outputChannel;
 | |
|         for (int y = 0; y < inputChannel; ++y) {
 | |
|             int yOutSide    = y / UNIT;
 | |
|             int yInside     = y % UNIT;
 | |
|             int yIndex      = yOutSide + k * inputChannelUnit;
 | |
|             int ySubOutside = yIndex / SRC_C4_UNIT;
 | |
|             int ySubInside  = yIndex % SRC_C4_UNIT;
 | |
| 
 | |
|             auto dstY = dst + ySubOutside * UNIT * SRC_UNIT + ySubInside * UNIT + yInside;
 | |
|             auto srcY = srcK + y * outputChannel;
 | |
|             for (int x = 0; x < outputChannel; ++x) {
 | |
|                 int xOutSide = x / UNIT;
 | |
|                 int xInside  = x % UNIT;
 | |
| 
 | |
|                 auto dstX = dstY + xOutSide * mWeight->stride(0) + xInside * SRC_UNIT;
 | |
|                 auto srcX = srcY + x;
 | |
| 
 | |
|                 dstX[0] = (int)srcX[0] - 128;
 | |
|                 if (dstX[0] == -128) {
 | |
|                     dstX[0] = -127;
 | |
|                 }
 | |
| 
 | |
|                 weightSum[x] += ((int32_t)dstX[0] - (int32_t)offsetFilter);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto originBiasData = mTfQuantizedConv2D_param->bias()->data();
 | |
|     mBias.reset(outputChannelUnit * 4);
 | |
|     auto biasData = mBias.get();
 | |
| 
 | |
|     // Sum[0, kx*ky*sz](x-x0)*(w-w0) = Sum(xw) - Sum(x)*w0 - Sum(w)*x0 + x0w0*(kx*ky*sz)
 | |
|     // Let bias[oz] = bias[oz] - Sum[0, kx*ky*sz](w)*x0 + x0w0*(kx*ky*sz)
 | |
|     for (int i = 0; i < outputChannel; ++i) {
 | |
|         biasData[i] = originBiasData[i] - weightSum[i] * mQuanParameter->mInputOffset + mQuanParameter->mOffsetAdd;
 | |
|     }
 | |
| }
 | |
| 
 | |
| CPUTFQuantizedConv2D::~CPUTFQuantizedConv2D() {
 | |
|     delete mQuanParameter;
 | |
|     delete mIm2ColParamter;
 | |
| }
 | |
| 
 | |
| ErrorCode CPUTFQuantizedConv2D::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     auto input        = inputs[0];
 | |
|     auto output       = outputs[0];
 | |
|     auto outputWidth  = output->width();
 | |
|     auto outputHeight = output->height();
 | |
|     auto inputWidth   = input->width();
 | |
|     auto inputHeight  = input->height();
 | |
| 
 | |
|     auto common       = mTfQuantizedConv2D_param->common();
 | |
|     auto strideX      = common->strideX();
 | |
|     auto strideY      = common->strideY();
 | |
|     auto filterWidth  = common->kernelX();
 | |
|     auto filterHeight = common->kernelY();
 | |
| 
 | |
|     if (common->padMode() == PadMode::PadMode_VALID) {
 | |
|         mIm2ColParamter->padX = ((outputWidth - 1) * strideX + filterWidth - inputWidth + 1) / 2;
 | |
|         mIm2ColParamter->padY = ((outputHeight - 1) * strideY + filterHeight - inputHeight + 1) / 2;
 | |
|     } else {
 | |
|         mIm2ColParamter->padX = ((outputWidth - 1) * strideX + filterWidth - inputWidth) / 2;
 | |
|         mIm2ColParamter->padY = ((outputHeight - 1) * strideY + filterHeight - inputHeight) / 2;
 | |
|     }
 | |
| 
 | |
|     int outputChannel = common->outputCount();
 | |
| 
 | |
|     auto outputChannelUnit = UP_DIV(outputChannel, UNIT);
 | |
|     auto kernelCountUnit   = mIm2ColParamter->kernelCountUnit;
 | |
|     mIm2ColParamter->iw    = inputWidth;
 | |
|     mIm2ColParamter->ih    = inputHeight;
 | |
|     mIm2ColParamter->ow    = outputWidth;
 | |
|     mIm2ColParamter->oh    = outputHeight;
 | |
| 
 | |
|     int tileCount = UP_DIV(outputWidth * outputHeight, DST_XUNIT);
 | |
|     mThreadNumber = std::max(((CPUBackend*)backend())->threadNumber(), 1);
 | |
|     mThreadNumber = std::min(mThreadNumber, tileCount);
 | |
| 
 | |
|     mTempBuffer.buffer().type          = halide_type_of<int8_t>();
 | |
|     mTempBuffer.buffer().dimensions    = 3;
 | |
|     mTempBuffer.buffer().dim[0].extent = mThreadNumber;
 | |
|     mTempBuffer.buffer().dim[1].extent = DST_XUNIT;
 | |
|     mTempBuffer.buffer().dim[2].extent = kernelCountUnit * SRC_UNIT;
 | |
|     TensorUtils::setLinearLayout(&mTempBuffer);
 | |
| 
 | |
|     mTempDstBuffer.buffer().type          = halide_type_of<int32_t>();
 | |
|     mTempDstBuffer.buffer().dimensions    = 3;
 | |
|     mTempDstBuffer.buffer().dim[0].extent = mThreadNumber;
 | |
|     mTempDstBuffer.buffer().dim[1].extent = DST_XUNIT;
 | |
|     mTempDstBuffer.buffer().dim[2].extent = outputChannelUnit * UNIT;
 | |
|     TensorUtils::setLinearLayout(&mTempDstBuffer);
 | |
| 
 | |
|     mTempInputSum.buffer().type          = halide_type_of<int32_t>();
 | |
|     mTempInputSum.buffer().dimensions    = 2;
 | |
|     mTempInputSum.buffer().dim[0].extent = mThreadNumber;
 | |
|     mTempInputSum.buffer().dim[1].extent = DST_XUNIT;
 | |
|     TensorUtils::setLinearLayout(&mTempInputSum);
 | |
| 
 | |
|     backend()->onAcquireBuffer(&mTempBuffer, Backend::DYNAMIC);
 | |
|     backend()->onAcquireBuffer(&mTempDstBuffer, Backend::DYNAMIC);
 | |
|     backend()->onAcquireBuffer(&mTempInputSum, Backend::DYNAMIC);
 | |
| 
 | |
|     backend()->onReleaseBuffer(&mTempBuffer, Backend::DYNAMIC);
 | |
|     backend()->onReleaseBuffer(&mTempDstBuffer, Backend::DYNAMIC);
 | |
|     backend()->onReleaseBuffer(&mTempInputSum, Backend::DYNAMIC);
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| static void _im2ColCommon(int32_t* inputSum, int8_t* colAddr, const uint8_t* inputOrigin,
 | |
|                           const CPUTFQuantizedConv2D::QuanParameter* quanParamter,
 | |
|                           const ConvolutionCommon::Im2ColParameter* im2ColParameter, size_t xIndexStart,
 | |
|                           size_t realDstCount) {
 | |
|     int colBufferSize = im2ColParameter->kernelCountUnit * DST_XUNIT * SRC_UNIT * sizeof(uint8_t);
 | |
|     ::memset(colAddr, (int8_t)quanParamter->mInputOffset, colBufferSize);
 | |
|     auto ih        = im2ColParameter->ih;
 | |
|     auto iw        = im2ColParameter->iw;
 | |
|     auto kh        = im2ColParameter->kernelY;
 | |
|     auto kw        = im2ColParameter->kernelX;
 | |
|     auto dilateX   = im2ColParameter->dilateX;
 | |
|     auto dilateY   = im2ColParameter->dilateY;
 | |
|     auto icDiv4    = im2ColParameter->icDiv4;
 | |
|     auto srcZStep  = iw * ih * UNIT;
 | |
|     int countSumC8 = im2ColParameter->kernelCountUnit;
 | |
|     for (int i = 0; i < realDstCount; ++i) {
 | |
|         int xIndex = (int)xIndexStart + i;
 | |
|         int ox     = xIndex % im2ColParameter->ow;
 | |
|         int oy     = xIndex / im2ColParameter->ow;
 | |
| 
 | |
|         int sx = ox * im2ColParameter->strideX - im2ColParameter->padX;
 | |
|         int sy = oy * im2ColParameter->strideY - im2ColParameter->padY;
 | |
| 
 | |
|         int sfy = ALIMAX(0, (UP_DIV(-sy, im2ColParameter->dilateX)));
 | |
|         int efy = ALIMIN(kh, UP_DIV(ih - sy, im2ColParameter->dilateY));
 | |
|         int sfx = ALIMAX(0, (UP_DIV(-sx, im2ColParameter->dilateX)));
 | |
|         int efx = ALIMIN(kw, UP_DIV(iw - sx, im2ColParameter->dilateX));
 | |
|         int fyC = efy - sfy;
 | |
|         int fxC = efx - sfx;
 | |
| 
 | |
|         auto colAddrI    = colAddr + SRC_UNIT * i;
 | |
|         auto inputOffset = inputOrigin + (sx + sy * iw) * UNIT + (sfx * dilateX) * UNIT + (sfy * dilateY) * iw * UNIT;
 | |
|         auto indexOffset = (sfy * kw + sfx) * icDiv4;
 | |
|         for (int fy = 0; fy < fyC; ++fy) {
 | |
|             for (int fx = 0; fx < fxC; ++fx) {
 | |
|                 auto inputK     = inputOffset + (fx * dilateX) * UNIT + (fy * dilateY) * iw * UNIT;
 | |
|                 auto indexStart = indexOffset + (fy * kw + fx) * icDiv4;
 | |
|                 for (int sz = 0; sz < icDiv4; ++sz) {
 | |
|                     auto inputZ       = inputK + srcZStep * sz;
 | |
|                     auto index        = indexStart + sz;
 | |
|                     auto indexInside  = index % SRC_C4_UNIT;
 | |
|                     auto indexOutside = index / SRC_C4_UNIT;
 | |
| 
 | |
|                     auto dstK         = colAddrI + indexOutside * SRC_UNIT * DST_XUNIT + UNIT * indexInside;
 | |
|                     //TODO Optimize it
 | |
|                     for (int j=0; j<UNIT; ++j) {
 | |
|                         dstK[j] = (int32_t)inputZ[j] - 128;
 | |
|                     }
 | |
|                     //*((int32_t*)dstK) = *((int32_t*)inputZ);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         int32_t inputSumValue = 0;
 | |
| #ifdef MNN_USE_NEON
 | |
|         int32x2_t inputSumValueC4 = vmov_n_s32(0);
 | |
| #endif
 | |
|         for (int j = 0; j < countSumC8; ++j) {
 | |
|             auto colAddrIJ = colAddrI + j * SRC_UNIT * DST_XUNIT;
 | |
| #ifdef MNN_USE_NEON
 | |
|             auto p0 = vld1_s8(colAddrIJ + 0);
 | |
|             auto p1 = vld1_s8(colAddrIJ + 8);
 | |
|             auto q0 = vpaddl_s8(p0);
 | |
|             auto q1 = vpaddl_s8(p1);
 | |
|             inputSumValueC4 += vpaddl_s16(q0);
 | |
|             inputSumValueC4 += vpaddl_s16(q1);
 | |
| #else
 | |
|             for (int k = 0; k < SRC_UNIT; ++k) {
 | |
|                 inputSumValue += colAddrIJ[k];
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
| #ifdef MNN_USE_NEON
 | |
|         inputSumValue = inputSumValueC4[0] + inputSumValueC4[1];
 | |
| #endif
 | |
|         inputSum[i] = inputSumValue * quanParamter->mFilterOffset;
 | |
|     }
 | |
| }
 | |
| 
 | |
| ErrorCode CPUTFQuantizedConv2D::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
 | |
|     MNN_ASSERT(inputs.size() == 1);
 | |
|     MNN_ASSERT(outputs.size() == 1);
 | |
|     // Input tensor is of the following dimensions:
 | |
|     // [ batch, in_rows, in_cols, in_depth ]
 | |
|     const Tensor* input = inputs[0];
 | |
| 
 | |
|     const int strideX = mIm2ColParamter->strideX;
 | |
|     const int strideY = mIm2ColParamter->strideY;
 | |
|     auto batchs       = input->batch();
 | |
|     auto ic           = input->channel();
 | |
|     auto iw           = input->width();
 | |
|     auto ih           = input->height();
 | |
|     auto output       = outputs[0];
 | |
|     auto oc           = output->channel();
 | |
|     auto oh           = output->height();
 | |
|     auto ow           = output->width();
 | |
| 
 | |
|     auto ocUnit = UP_DIV(oc, UNIT);
 | |
|     int icDiv4  = UP_DIV(ic, UNIT);
 | |
|     int kh      = mIm2ColParamter->kernelY;
 | |
|     int kw      = mIm2ColParamter->kernelX;
 | |
| 
 | |
|     auto kernelCountUnit = mIm2ColParamter->kernelCountUnit;
 | |
|     int outputCount      = ow * oh;
 | |
|     int outputCountTile  = UP_DIV(outputCount, DST_XUNIT);
 | |
| 
 | |
|     bool fastMode = kw == 1 && kh == 1 && strideX == 1 && strideY == 1 && mIm2ColParamter->padY == 0 &&
 | |
|                     mIm2ColParamter->padX == 0 && icDiv4 % SRC_C4_UNIT == 0;
 | |
|     auto gemmFunction = MNNGemmint8to32_8x4_Unit;
 | |
|     const int* biasData = mBias.get();
 | |
| 
 | |
|     for (int batchIndex = 0; batchIndex < batchs; ++batchIndex) {
 | |
|         auto inputOrigin  = input->host<uint8_t>() + batchIndex * input->stride(0);
 | |
|         auto weightOrigin = mWeight->host<int8_t>();
 | |
|         auto outputOrigin = output->host<uint8_t>() + batchIndex * output->stride(0);
 | |
| 
 | |
|         MNN_CONCURRENCY_BEGIN(tId, mThreadNumber) {
 | |
|             auto colAddr        = mTempBuffer.host<int8_t>() + tId * mTempBuffer.buffer().dim[0].stride;
 | |
|             auto gemmOutputAddr = mTempDstBuffer.host<int32_t>() + tId * mTempDstBuffer.buffer().dim[0].stride;
 | |
|             auto inputSum       = mTempInputSum.host<int32_t>() + mTempInputSum.stride(0) * tId;
 | |
| 
 | |
|             for (int tIndex = (int)tId; tIndex < outputCountTile; tIndex += mThreadNumber) {
 | |
|                 int xIndexStart  = tIndex * DST_XUNIT;
 | |
|                 int realDstCount = ALIMIN(outputCount - xIndexStart, DST_XUNIT);
 | |
|                 /*Im2Col Begin*/
 | |
|                 if (fastMode) {
 | |
|                     MNNLoadU8AndSum(inputSum, colAddr, inputOrigin + UNIT * xIndexStart, iw * ih * UNIT, icDiv4 / SRC_C4_UNIT,
 | |
|                                     realDstCount, mQuanParameter->mFilterOffset);
 | |
|                 } else {
 | |
|                     _im2ColCommon(inputSum, colAddr, inputOrigin, mQuanParameter, mIm2ColParamter, xIndexStart,
 | |
|                                   realDstCount);
 | |
|                 }
 | |
| 
 | |
|                 /*Im2Col End*/
 | |
| 
 | |
|                 // GEMM
 | |
|                 gemmFunction(gemmOutputAddr, colAddr, weightOrigin, inputSum, kernelCountUnit, UNIT * DST_XUNIT * sizeof(int32_t),
 | |
|                                           ocUnit);
 | |
| 
 | |
|                 /*Copy Data to Real Output*/
 | |
|                 auto outputInTile = outputOrigin + xIndexStart * UNIT;
 | |
|                 MNNQuanToDestUint8(outputInTile, gemmOutputAddr, biasData, ocUnit, realDstCount,
 | |
|                                    ow * oh * UNIT * sizeof(uint8_t), DST_XUNIT * UNIT * sizeof(int32_t),
 | |
|                                    mQuanParameter);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         MNN_CONCURRENCY_END();
 | |
|     }
 | |
| 
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUTFQuantizedConv2DCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
 | |
|                                 const MNN::Op* op, Backend* backend) const {
 | |
|         return new CPUTFQuantizedConv2D(backend, op);
 | |
|     }
 | |
| };
 | |
| } // namespace MNN
 | |
| #endif
 | |
| namespace MNN {
 | |
| REGISTER_CPU_OP_CREATOR_OLD(CPUTFQuantizedConv2DCreator, OpType_TfQuantizedConv2D);
 | |
| }
 |