mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			564 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			564 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| //  CPUUnary.cpp
 | |
| //  MNN
 | |
| //
 | |
| //  Created by MNN on 2018/08/02.
 | |
| //  Copyright © 2018, Alibaba Group Holding Limited
 | |
| //
 | |
| 
 | |
| #include "backend/cpu/CPUUnary.hpp"
 | |
| #include "UnaryUtils.hpp"
 | |
| #include "backend/cpu/CPUBackend.hpp"
 | |
| #include "core/Macro.h"
 | |
| #include "core/Concurrency.h"
 | |
| #include "compute/ConvOpt.h"
 | |
| #include "compute/CommonOptFunction.h"
 | |
| #include <MNN/AutoTime.hpp>
 | |
| #include "math/Vec.hpp"
 | |
| #include "core/TensorUtils.hpp"
 | |
| 
 | |
| namespace MNN {
 | |
| using VecType = Math::Vec<int8_t, 8>;
 | |
| CPUUnary::CPUUnary(Backend *b, MNNUnaryExecute proc, MNNUnaryExecuteInt8 procInt8, const Op* op) : MNN::Execution(b), mProc(proc), mProcInt8(procInt8){
 | |
|     if (op->main_as_UnaryOp()->tableInt8()) {
 | |
|         mTableBuffer.resize(255);
 | |
|         ::memcpy(mTableBuffer.data(), op->main_as_UnaryOp()->tableInt8()->data(), 255);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ErrorCode CPUUnary::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     MNN_ASSERT(1 == outputs.size());
 | |
|     MNN_ASSERT(inputs[0]->getType() == halide_type_of<float>() || inputs[0]->getType() == halide_type_of<int32_t>());
 | |
|     if (mProcInt8) {
 | |
|         auto quantIn = TensorUtils::getDescribe(inputs[0])->quantAttr;
 | |
|         auto quantOut = TensorUtils::getDescribe(outputs[0])->quantAttr;
 | |
|         float outpScale = quantOut->scale == 0.f ? 0.f: 1.0f / quantOut->scale;
 | |
|         mInpScale.push_back(quantIn->scale);
 | |
|         mOupScale.push_back(outpScale);
 | |
|         mInpZeroPoint.push_back(quantIn->zero);
 | |
|         mOupZeroPoint.push_back(quantOut->zero);
 | |
|         mMaxMinValue = {static_cast<ssize_t>(quantOut->min), static_cast<ssize_t>(quantOut->max)};
 | |
|     }
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| static void _Neg(void* out, const void* inp, int realSize) {
 | |
|     MNNScaleAndAddBiasScalar((float*)out, (const float*)inp, 0.0f, -1.0f, realSize);
 | |
| }
 | |
| #ifdef MNN_USE_NEON
 | |
| static inline void exeNegInt8 (int8_t* out, const int8_t* inp, int sizeQuad, int8x8_t inZeroPoint, int8x8_t outZeroPoint, float32x4_t inpScale, float32x4_t outScale) {
 | |
|     for (int i = 0;i < sizeQuad; ++i) {
 | |
|         int8x16_t negValue = vld1q_s8(inp);
 | |
|         int16x8_t val16_0 = vmovl_s8(vget_low_s8(negValue));
 | |
|         int16x8_t val16_1 = vmovl_s8(vget_high_s8(negValue));
 | |
|         val16_0 = vsubw_s8(val16_0, inZeroPoint);
 | |
|         val16_1 = vsubw_s8(val16_1, inZeroPoint);
 | |
|         int32x4_t val32_00 = vmovl_s16(vget_low_s16(val16_0));
 | |
|         int32x4_t val32_01 = vmovl_s16(vget_high_s16(val16_0));
 | |
|         int32x4_t val32_10 = vmovl_s16(vget_low_s16(val16_1));
 | |
|         int32x4_t val32_11 = vmovl_s16(vget_high_s16(val16_1));
 | |
|         float32x4_t valF_00 = vcvtq_f32_s32(val32_00);
 | |
|         float32x4_t valF_01 = vcvtq_f32_s32(val32_01);
 | |
|         float32x4_t valF_10 = vcvtq_f32_s32(val32_10);
 | |
|         float32x4_t valF_11 = vcvtq_f32_s32(val32_11);
 | |
|         valF_00 = vmulq_f32(valF_00, inpScale);
 | |
|         valF_01 = vmulq_f32(valF_01, inpScale);
 | |
|         valF_10 = vmulq_f32(valF_10, inpScale);
 | |
|         valF_11 = vmulq_f32(valF_11, inpScale);
 | |
|         valF_00 = vnegq_f32(valF_00);
 | |
|         valF_01 = vnegq_f32(valF_01);
 | |
|         valF_10 = vnegq_f32(valF_10);
 | |
|         valF_11 = vnegq_f32(valF_11);
 | |
|         valF_00 = vmulq_f32(valF_00, outScale);
 | |
|         valF_01 = vmulq_f32(valF_01, outScale);
 | |
|         valF_10 = vmulq_f32(valF_10, outScale);
 | |
|         valF_11 = vmulq_f32(valF_11, outScale);
 | |
|         int32x4_t val_00 = vcvtq_s32_f32(valF_00);
 | |
|         int32x4_t val_01 = vcvtq_s32_f32(valF_01);
 | |
|         int32x4_t val_10 = vcvtq_s32_f32(valF_10);
 | |
|         int32x4_t val_11 = vcvtq_s32_f32(valF_11);
 | |
|         int16x4_t v16_0 = vqmovn_s32(val_00);
 | |
|         int16x4_t v16_1 = vqmovn_s32(val_01);
 | |
|         int16x4_t v16_2 = vqmovn_s32(val_10);
 | |
|         int16x4_t v16_3 = vqmovn_s32(val_11);
 | |
|         int16x8_t v16_4 = vcombine_s16(v16_0, v16_1);
 | |
|         int16x8_t v16_5 = vcombine_s16(v16_2, v16_3);
 | |
|         v16_4 = vaddw_s8(v16_4, outZeroPoint);
 | |
|         v16_5 = vaddw_s8(v16_5, outZeroPoint);
 | |
|         int8x8_t v8_0 = vqmovn_s16(v16_4);
 | |
|         int8x8_t v8_1 = vqmovn_s16(v16_5);
 | |
| 
 | |
|         vst1_s8(out, v8_0);
 | |
|         vst1_s8(out + 8, v8_1);
 | |
|         inp  += 16;
 | |
|         out += 16;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| static void _NegInt8(void* out, const void* inp, int realSize, QuanPrePostParameters* params) {
 | |
|     int sizeDiv16 = realSize / 16;
 | |
|     int remain = realSize % 16;
 | |
| #ifdef MNN_USE_NEON
 | |
|     int8_t* outPtr = (int8_t*)out;
 | |
|     int8_t* inPtr  = (int8_t*)inp;
 | |
|     int8x8_t inZeroPoint = vdup_n_s8(params->inputZeroPoint[0]);
 | |
|     int8x8_t outZeroPoint = vdup_n_s8(params->outputZeroPoint[0]);
 | |
|     float32x4_t inpScale = vdupq_n_f32(params->inputScale[0]);
 | |
|     float32x4_t outScale = vdupq_n_f32(params->outputScale[0]);
 | |
|     if (sizeDiv16 > 0) {
 | |
|         exeNegInt8(outPtr, inPtr, sizeDiv16, inZeroPoint, outZeroPoint, inpScale, outScale);
 | |
|     }
 | |
|     if (remain > 0) {
 | |
|         int8_t intmp[16] = {0};
 | |
|         int8_t outmp[16] = {0};
 | |
|         ::memcpy(intmp, reinterpret_cast<const int8_t*>(inp) + 16 * sizeDiv16, remain * sizeof(int8_t));
 | |
|         exeNegInt8(outmp, intmp, 1, inZeroPoint, outZeroPoint, inpScale, outScale);
 | |
|         ::memcpy(reinterpret_cast<int8_t*>(out) + 16 * sizeDiv16, outmp, remain * sizeof(int8_t));
 | |
|     }
 | |
| #else
 | |
| #ifdef MNN_USE_SSE
 | |
|     uint8_t* dst = (uint8_t*)out;
 | |
|     uint8_t* src = (uint8_t*)inp;
 | |
|     int offset = 128;
 | |
| #else
 | |
|     int8_t* dst = (int8_t*)out;
 | |
|     int8_t* src = (int8_t*)inp;
 | |
|     int offset = 0;
 | |
| #endif
 | |
|     int inzero_     = static_cast<int>(params->inputZeroPoint[0]);
 | |
|     int outzero_    = static_cast<int>(params->outputZeroPoint[0]);
 | |
|     float inscale_  = params->inputScale[0];
 | |
|     float outscale_ = params->outputScale[0];
 | |
|     int min_        = static_cast<int>(params->minValue);
 | |
|     int max_        = static_cast<int>(params->maxValue);
 | |
|     for (int i = 0; i < realSize; ++i) {
 | |
|         int value = -(src[i] - inzero_ - offset) * inscale_ * outscale_ + outzero_;
 | |
|         if (value > max_) {
 | |
|             value = max_;
 | |
|         }
 | |
|         if (value < min_) {
 | |
|             value = min_;
 | |
|         }
 | |
|         dst[i] = value + offset;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void _ABS(void* out, const void* inp, int realSize) {
 | |
|     MNNReluWithSlopeCommon((float*)out, (const float*)inp, realSize, -1.0f);
 | |
| }
 | |
| #ifdef MNN_USE_NEON
 | |
| static inline void exeAbsInt8(int8_t* out, const int8_t* inp, int sizeQuad, int8x8_t inZeroPoint, int8x8_t outZeroPoint, float32x4_t inpScale, float32x4_t outScale) {
 | |
|     for (int i = 0;i < sizeQuad; ++i) {
 | |
|         int8x16_t absValue = vld1q_s8(inp);
 | |
|         int16x8_t val16_0 = vmovl_s8(vget_low_s8(absValue));
 | |
|         int16x8_t val16_1 = vmovl_s8(vget_high_s8(absValue));
 | |
|         val16_0 = vsubw_s8(val16_0, inZeroPoint);
 | |
|         val16_1 = vsubw_s8(val16_1, inZeroPoint);
 | |
|         int32x4_t val32_00 = vmovl_s16(vget_low_s16(val16_0));
 | |
|         int32x4_t val32_01 = vmovl_s16(vget_high_s16(val16_0));
 | |
|         int32x4_t val32_10 = vmovl_s16(vget_low_s16(val16_1));
 | |
|         int32x4_t val32_11 = vmovl_s16(vget_high_s16(val16_1));
 | |
|         float32x4_t valF_00 = vcvtq_f32_s32(val32_00);
 | |
|         float32x4_t valF_01 = vcvtq_f32_s32(val32_01);
 | |
|         float32x4_t valF_10 = vcvtq_f32_s32(val32_10);
 | |
|         float32x4_t valF_11 = vcvtq_f32_s32(val32_11);
 | |
|         valF_00 = vmulq_f32(valF_00, inpScale);
 | |
|         valF_01 = vmulq_f32(valF_01, inpScale);
 | |
|         valF_10 = vmulq_f32(valF_10, inpScale);
 | |
|         valF_11 = vmulq_f32(valF_11, inpScale);
 | |
|         valF_00 = vabsq_f32(valF_00);
 | |
|         valF_01 = vabsq_f32(valF_01);
 | |
|         valF_10 = vabsq_f32(valF_10);
 | |
|         valF_11 = vabsq_f32(valF_11);
 | |
|         valF_00 = vmulq_f32(valF_00, outScale);
 | |
|         valF_01 = vmulq_f32(valF_01, outScale);
 | |
|         valF_10 = vmulq_f32(valF_10, outScale);
 | |
|         valF_11 = vmulq_f32(valF_11, outScale);
 | |
|         int32x4_t val_00 = vcvtq_s32_f32(valF_00);
 | |
|         int32x4_t val_01 = vcvtq_s32_f32(valF_01);
 | |
|         int32x4_t val_10 = vcvtq_s32_f32(valF_10);
 | |
|         int32x4_t val_11 = vcvtq_s32_f32(valF_11);
 | |
|         int16x4_t v16_0 = vqmovn_s32(val_00);
 | |
|         int16x4_t v16_1 = vqmovn_s32(val_01);
 | |
|         int16x4_t v16_2 = vqmovn_s32(val_10);
 | |
|         int16x4_t v16_3 = vqmovn_s32(val_11);
 | |
|         int16x8_t v16_4 = vcombine_s16(v16_0, v16_1);
 | |
|         int16x8_t v16_5 = vcombine_s16(v16_2, v16_3);
 | |
|         v16_4 = vaddw_s8(v16_4, outZeroPoint);
 | |
|         v16_5 = vaddw_s8(v16_5, outZeroPoint);
 | |
|         int8x8_t v8_0 = vqmovn_s16(v16_4);
 | |
|         int8x8_t v8_1 = vqmovn_s16(v16_5);
 | |
| 
 | |
|         vst1_s8(out, v8_0);
 | |
|         vst1_s8(out + 8, v8_1);
 | |
|         inp  += 16;
 | |
|         out += 16;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| static void _ABSInt8(void* out, const void* inp, int realSize, QuanPrePostParameters* params) {
 | |
|     int sizeDiv16 = realSize / 16;
 | |
|     int remain = realSize % 16;
 | |
| #ifdef MNN_USE_NEON
 | |
|     int8_t* outPtr = (int8_t*)out;
 | |
|     int8_t* inPtr  = (int8_t*)inp;
 | |
|     int8x8_t inZeroPoint = vdup_n_s8(params->inputZeroPoint[0]);
 | |
|     int8x8_t outZeroPoint = vdup_n_s8(params->outputZeroPoint[0]);
 | |
|     float32x4_t inpScale = vdupq_n_f32(params->inputScale[0]);
 | |
|     float32x4_t outScale = vdupq_n_f32(params->outputScale[0]);
 | |
|     if (sizeDiv16 > 0) {
 | |
|         exeAbsInt8(outPtr, inPtr, sizeDiv16, inZeroPoint, outZeroPoint, inpScale, outScale);
 | |
|     }
 | |
|     if (remain > 0) {
 | |
|         int8_t intmp[16] = {0};
 | |
|         int8_t outmp[16] = {0};
 | |
|         ::memcpy(intmp, reinterpret_cast<const int8_t*>(inp) + 16 * sizeDiv16, remain * sizeof(int8_t));
 | |
|         exeAbsInt8(outmp, intmp, 1, inZeroPoint, outZeroPoint, inpScale, outScale);
 | |
|         ::memcpy(reinterpret_cast<int8_t*>(out) + 16 * sizeDiv16, outmp, remain * sizeof(int8_t));
 | |
|     }
 | |
| #else
 | |
| #ifdef MNN_USE_SSE
 | |
|     uint8_t* dst = (uint8_t*)out;
 | |
|     uint8_t* src = (uint8_t*)inp;
 | |
|     int offset = 128;
 | |
| #else
 | |
|     int8_t* dst = (int8_t*)out;
 | |
|     int8_t* src = (int8_t*)inp;
 | |
|     int offset = 0;
 | |
| #endif
 | |
|     int inzero_  = static_cast<int>(params->inputZeroPoint[0]);
 | |
|     int outzero_ = static_cast<int>(params->outputZeroPoint[0]);
 | |
|     for (int i = 0; i < realSize; ++i) {
 | |
|         auto value = abs((src[i] - inzero_ - offset) * params->inputScale[0]);
 | |
|         value = value * params->outputScale[0] + outzero_;
 | |
|         if (value > params->maxValue) {
 | |
|             value = params->maxValue;
 | |
|         }
 | |
|         if (value < params->minValue) {
 | |
|             value = params->minValue;
 | |
|         }
 | |
|         dst[i] = value + offset;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| #ifdef MNN_USE_NEON
 | |
| static inline void exeSignInt8 (int8_t* out, const int8_t* inp, int sizeQuad, int16x8_t one, int16x8_t negone, int16x8_t zero, int8x8_t inZeroPoint, int8x8_t outZeroPoint, float32x4_t outScale) {
 | |
|         for (int i = 0;i < sizeQuad; ++i) {
 | |
|             int8x16_t value = vld1q_s8(inp);
 | |
|             int16x8_t vallow = vmovl_s8(vget_low_s8(value));
 | |
|             int16x8_t valhi = vmovl_s8(vget_high_s8(value));
 | |
|             vallow = vsubw_s8(vallow, inZeroPoint);
 | |
|             valhi  = vsubw_s8(valhi, inZeroPoint);
 | |
|             uint16x8_t lomask1  = vcgtq_s16(vallow, zero);
 | |
|             uint16x8_t lomask_1 = vcltq_s16(vallow, zero);
 | |
|             uint16x8_t himask1  = vcgtq_s16(valhi, zero);
 | |
|             uint16x8_t himask_1 = vcltq_s16(valhi, zero);
 | |
|             uint16x8_t zeromask_low = vceqq_u16(lomask1, lomask_1);
 | |
|             uint16x8_t zeromask_hi = vceqq_u16(himask1, himask_1);
 | |
|             vallow = vbslq_s16(lomask1, one, negone);
 | |
|             vallow = vbslq_s16(zeromask_low, zero, vallow);
 | |
|             valhi = vbslq_s16(himask1, one, negone);
 | |
|             valhi = vbslq_s16(zeromask_hi, zero, valhi);
 | |
|             int8x8_t v8_0 = vqmovn_s16(vallow);
 | |
|             int8x8_t v8_1 = vqmovn_s16(valhi);
 | |
|             vst1_s8(out, v8_0);
 | |
|             vst1_s8(out + 8, v8_1);
 | |
|             inp  += 16;
 | |
|             out += 16;
 | |
|         }
 | |
| }
 | |
| #endif
 | |
| static void _SignInt8(void* out, const void* inp, int realSize, QuanPrePostParameters* params) {
 | |
|     int sizeDiv16 = realSize / 16;
 | |
|     int remain = realSize % 16;
 | |
| #ifdef MNN_USE_NEON
 | |
|     int8_t* outPtr = (int8_t*)out;
 | |
|     int8_t* inPtr  = (int8_t*)inp;
 | |
|     int16x8_t one = vdupq_n_s16(1);
 | |
|     int16x8_t negone = vdupq_n_s16(-1);
 | |
|     int16x8_t zero = vdupq_n_s16(0);
 | |
|     int8x8_t inZeroPoint = vdup_n_s8(params->inputZeroPoint[0]);
 | |
|     int8x8_t outZeroPoint = vdup_n_s8(params->outputZeroPoint[0]);
 | |
|     float32x4_t outScale = vdupq_n_f32(params->outputScale[0]);
 | |
|     if (sizeDiv16 > 0) {
 | |
|         exeSignInt8(outPtr, inPtr, sizeDiv16, one, negone, zero, inZeroPoint, outZeroPoint, outScale);
 | |
|     }
 | |
|     if (remain > 0) {
 | |
|         int8_t intmp[16] = {0};
 | |
|         int8_t outmp[16] = {0};
 | |
|         ::memcpy(intmp, reinterpret_cast<const int8_t*>(inp) + 16 * sizeDiv16, remain * sizeof(int8_t));
 | |
|         exeSignInt8(outmp, intmp, 1, one, negone, zero, inZeroPoint, outZeroPoint, outScale);
 | |
|         ::memcpy(reinterpret_cast<int8_t*>(out) + 16 * sizeDiv16, outmp, remain * sizeof(int8_t));
 | |
|     }
 | |
| #else
 | |
| #ifdef MNN_USE_SSE
 | |
|     uint8_t* dst = (uint8_t*)out;
 | |
|     uint8_t* src = (uint8_t*)inp;
 | |
|     int offset = 128;
 | |
| #else
 | |
|     int8_t* dst = (int8_t*)out;
 | |
|     int8_t* src = (int8_t*)inp;
 | |
|     int offset = 0;
 | |
| #endif
 | |
|     int inzero_  = static_cast<int>(params->inputZeroPoint[0]);
 | |
|     int outzero_ = static_cast<int>(params->outputZeroPoint[0]);
 | |
|     for (int i = 0; i < realSize; ++i) {
 | |
|         auto value = src[i] - offset - inzero_;
 | |
|         if (value > 0) {
 | |
|             int f = 1 * params->outputScale[0] + outzero_;
 | |
|             dst[i]     = f + offset;
 | |
|         } else if (value < 0) {
 | |
|             int f = -1 * params->outputScale[0] + outzero_;
 | |
|             dst[i]     = f + offset;
 | |
|         } else {
 | |
|             dst[i] = outzero_ + offset;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void _Square(void* out, const void* inp, int realSize) {
 | |
|     MNNMatrixProdCommon((float*)out, (const float*)inp, (const float*)inp, realSize, 0, 0, 0, 1);
 | |
| }
 | |
| 
 | |
| static void _EXP(void* outRaw, const void* inpRaw, int realSize) {
 | |
|     auto out = (float*)outRaw;
 | |
|     auto inp = (const float*)inpRaw;
 | |
|     float offset[] = {
 | |
|         1.0f,
 | |
|         0.0f,
 | |
|         0.0f,
 | |
|         0.0f
 | |
|     };
 | |
|     MNNExp(out, inp, offset, realSize);
 | |
| }
 | |
| static void _EXPM1(void* outRaw, const void* inpRaw, int realSize) {
 | |
|     auto out = (float*)outRaw;
 | |
|     auto inp = (const float*)inpRaw;
 | |
|     float offset[] = {
 | |
|         1.0f,
 | |
|         -1.0f,
 | |
|         0.0f,
 | |
|         0.0f
 | |
|     };
 | |
|     MNNExp(out, inp, offset, realSize);
 | |
| }
 | |
| 
 | |
| MNNUnaryExecute CPUUnary::selectForFloat(int type, int precision) {
 | |
|     switch (type) {
 | |
|         case UnaryOpOperation_ABS:
 | |
|             return _ABS;
 | |
|         case UnaryOpOperation_SQUARE:
 | |
|             return _Square;
 | |
|         case UnaryOpOperation_NEG:
 | |
|             return _Neg;
 | |
|         case UnaryOpOperation_RSQRT:
 | |
|             return _unaryOp<UnaryRsqrt<float>, float>;
 | |
|         case UnaryOpOperation_EXP:
 | |
|             return _EXP;
 | |
|         case UnaryOpOperation_COS:
 | |
|             return _unaryOp<UnaryCos<float>, float>;
 | |
|         case UnaryOpOperation_SIN:
 | |
|             return (MNNUnaryExecute)MNNSin;
 | |
|         case UnaryOpOperation_SIGMOID:
 | |
|             if (BackendConfig::Precision_Low == precision) {
 | |
|                 return (MNNUnaryExecute)MNNSigmoidLowp;
 | |
|             } else {
 | |
|                 return (MNNUnaryExecute)MNNSigmoid;
 | |
|             }
 | |
|             break;
 | |
|         case UnaryOpOperation_TANH:
 | |
|             return (MNNUnaryExecute)MNNTanh;
 | |
|         case UnaryOpOperation_TAN:
 | |
|             return _unaryOp<UnaryTan<float>, float>;
 | |
|         case UnaryOpOperation_ATAN:
 | |
|             return _unaryOp<UnaryATan<float>, float>;
 | |
|         case UnaryOpOperation_SQRT:
 | |
|             return _unaryOp<UnarySqrt<float>, float>;
 | |
|         case UnaryOpOperation_CEIL:
 | |
|             return _unaryOp<UnaryCeil<float>, float>;
 | |
|         case UnaryOpOperation_RECIPROCAL:
 | |
|             return _unaryOp<UnaryRecipocal<float>, float>;
 | |
|         case UnaryOpOperation_LOG1P:
 | |
|             return _unaryOp<UnaryLog1p<float>, float>;
 | |
|         case UnaryOpOperation_LOG:
 | |
|             return _unaryOp<UnaryLog<float>, float>;
 | |
|         case UnaryOpOperation_FLOOR:
 | |
|             return _unaryOp<UnaryFloor<float>, float>;
 | |
|         case UnaryOpOperation_BNLL:
 | |
|             return _unaryOp<UnaryBNLL<float>, float>;
 | |
|         case UnaryOpOperation_ACOSH:
 | |
|             return _unaryOp<UnaryAcosh<float>, float>;
 | |
|         case UnaryOpOperation_SINH:
 | |
|             return _unaryOp<UnarySinh<float>, float>;
 | |
|         case UnaryOpOperation_ASINH:
 | |
|             return _unaryOp<UnaryAsinh<float>, float>;
 | |
|         case UnaryOpOperation_ATANH:
 | |
|             return _unaryOp<UnaryAtanh<float>, float>;
 | |
|         case UnaryOpOperation_SIGN:
 | |
|             return _unaryOp<UnarySign<float>, float>;
 | |
|         case UnaryOpOperation_ROUND:
 | |
|             return _unaryOp<UnaryRound<float>, float>;
 | |
|         case UnaryOpOperation_COSH:
 | |
|             return _unaryOp<UnaryCosh<float>, float>;
 | |
|         case UnaryOpOperation_ERF:
 | |
|             return _unaryOp<UnaryErf<float>, float>;
 | |
|         case UnaryOpOperation_ERFC:
 | |
|             return _unaryOp<UnaryErfc<float>, float>;
 | |
|         case UnaryOpOperation_ERFINV:
 | |
|             return _unaryOp<UnaryErfinv<float>, float>;
 | |
|         case UnaryOpOperation_EXPM1:
 | |
|             return _EXPM1;
 | |
|         case UnaryOpOperation_ASIN:
 | |
|             return _unaryOp<UnaryAsin<float>, float>;
 | |
|         case UnaryOpOperation_ACOS:
 | |
|             return _unaryOp<UnaryAcos<float>, float>;
 | |
|         case UnaryOpOperation_HARDSWISH:
 | |
|             return (MNNUnaryExecute)MNNHardSwishCommon;
 | |
|         case UnaryOpOperation_GELU:
 | |
|             return (MNNUnaryExecute)MNNGeluCommon;
 | |
|         case UnaryOpOperation_GELU_STANDARD:
 | |
|             return (MNNUnaryExecute)MNNGeluStandardCommon;
 | |
|         default:
 | |
|             MNN_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| static MNNUnaryExecute selectForInt(int type) {
 | |
|     switch (type) {
 | |
|         case UnaryOpOperation_ABS:
 | |
|             return _unaryOp<UnaryAbs<int32_t>, int32_t>;
 | |
|         case UnaryOpOperation_NEG:
 | |
|             return _unaryOp<UnaryNeg<int32_t>, int32_t>;
 | |
|         case UnaryOpOperation_SQUARE:
 | |
|             return _unaryOp<UnarySquare<int32_t>, int32_t>;
 | |
|         case UnaryOpOperation_SIGN:
 | |
|             return _unaryOp<UnarySign<int32_t>, int32_t>;
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| MNNUnaryExecuteInt8 CPUUnary::selectForInt8(int type) {
 | |
|     switch (type) {
 | |
|         case UnaryOpOperation_ABS:
 | |
|             return _ABSInt8;
 | |
|         case UnaryOpOperation_NEG:
 | |
|             return _NegInt8;
 | |
|         case UnaryOpOperation_SIGN:
 | |
|             return _SignInt8;
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     return nullptr;
 | |
| }
 | |
| ErrorCode CPUUnary::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | |
|     auto input  = inputs[0];
 | |
|     auto output = outputs[0];
 | |
|     auto size = static_cast<CPUBackend*>(backend())->getTensorSize(input);
 | |
|     auto schedule = ((CPUBackend*)backend())->multiThreadDivide(size);
 | |
|     auto inputPtr = input->host<uint8_t>();
 | |
|     auto outputPtr = output->host<uint8_t>();
 | |
|     int outBytes = output->getType().bytes();
 | |
|     if (halide_type_float == output->getType().code) {
 | |
|         outBytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
 | |
|     }
 | |
|     if (mTableBuffer.data()) {
 | |
| #ifdef MNN_USE_SSE
 | |
|         uint8_t* srcO = inputPtr;
 | |
|         uint8_t* dstO = outputPtr;
 | |
|         int offset = 128;
 | |
| #else
 | |
|         int8_t* srcO = (int8_t*)inputPtr;
 | |
|         int8_t* dstO = (int8_t*)outputPtr;
 | |
|         int offset = 0;
 | |
| #endif
 | |
|         MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
 | |
|             int start = schedule.first * (int)tId;
 | |
|             int realSize = schedule.first;
 | |
|             if (tId == schedule.second -1 ) {
 | |
|                 realSize = size - start;
 | |
|             }
 | |
|             if (realSize > 0) {
 | |
|                 auto inp = srcO + start;
 | |
|                 auto out = dstO + start;
 | |
|                 for (int i = 0; i < realSize; ++i) {
 | |
|                     int idx = inp[i] - offset + 127;
 | |
|                     out[i] = offset + mTableBuffer[idx];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         MNN_CONCURRENCY_END();
 | |
|         return NO_ERROR;
 | |
|     }
 | |
|     if (mProcInt8) {
 | |
|         MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
 | |
|             QuanPrePostParameters params;
 | |
|             params.inputScale = mInpScale.data();
 | |
|             params.outputScale = mOupScale.data();
 | |
|             params.inputZeroPoint= mInpZeroPoint.data();
 | |
|             params.outputZeroPoint = mOupZeroPoint.data();
 | |
|             params.maxValue = mMaxMinValue[1];
 | |
|             params.minValue = mMaxMinValue[0];
 | |
|             int start = schedule.first * (int)tId;
 | |
|             int realSize = schedule.first;
 | |
|             if (tId == schedule.second -1 ) {
 | |
|                 realSize = size - start;
 | |
|             }
 | |
|             if (realSize > 0) {
 | |
|                 auto inp = inputPtr + start;
 | |
|                 auto out = outputPtr + start;
 | |
|                 mProcInt8(out, inp, realSize, ¶ms);
 | |
|             }
 | |
|         }
 | |
|         MNN_CONCURRENCY_END();
 | |
|         return NO_ERROR;
 | |
|     }
 | |
|     MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
 | |
|         int start = schedule.first * (int)tId;
 | |
|         int realSize = schedule.first;
 | |
|         if (tId == schedule.second -1 ) {
 | |
|             realSize = size - start;
 | |
|         }
 | |
|         if (realSize > 0) {
 | |
|             auto inp = inputPtr + start * outBytes;
 | |
|             auto out = outputPtr + start * outBytes;
 | |
|             mProc(out, inp, realSize);
 | |
|         }
 | |
|     }
 | |
|     MNN_CONCURRENCY_END();
 | |
|     return NO_ERROR;
 | |
| }
 | |
| 
 | |
| class CPUUnaryCreator : public CPUBackend::Creator {
 | |
| public:
 | |
|     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | |
|                                 const MNN::Op *op, Backend *backend) const override {
 | |
|         auto core = static_cast<CPUBackend*>(backend)->functions();
 | |
|         auto precision = static_cast<CPUBackend*>(backend)->precisionMode();
 | |
|         auto type = inputs[0]->getType();
 | |
|         MNNUnaryExecute proc = nullptr;
 | |
|         MNNUnaryExecuteInt8 procInt8 = nullptr;
 | |
|         if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
 | |
|             procInt8 = core->MNNSelectUnaryFunctionForInt8(op->main_as_UnaryOp()->opType());
 | |
|         } else if (type.code == halide_type_int) {
 | |
|             proc = selectForInt(op->main_as_UnaryOp()->opType());
 | |
|         } else if (type.code == halide_type_float) {
 | |
|             proc = core->MNNSelectUnaryFunctionForFloat(op->main_as_UnaryOp()->opType(), static_cast<CPUBackend*>(backend)->precisionMode());
 | |
|         }
 | |
|         if (nullptr == proc && nullptr == procInt8 && nullptr == op->main_as_UnaryOp()->tableInt8()) {
 | |
|             MNN_ERROR("ERROR: Unary Op can not execute\n");
 | |
|             return nullptr;
 | |
|         }
 | |
|         return new CPUUnary(backend, proc, procInt8, op);
 | |
|     }
 | |
| };
 | |
| 
 | |
| REGISTER_CPU_OP_CREATOR(CPUUnaryCreator, OpType_UnaryOp);
 | |
| 
 | |
| } // namespace MNN
 |