mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			337 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			337 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  DepthwiseConvBufExecution.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/02/28.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#ifndef MNN_OPENCL_BUFFER_CLOSED
 | 
						|
 | 
						|
#include "backend/opencl/execution/buffer/DepthwiseConvBufExecution.hpp"
 | 
						|
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
 | 
						|
#include "core/ConvolutionCommon.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
namespace OpenCL {
 | 
						|
 | 
						|
DepthwiseConvBufExecution::DepthwiseConvBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
 | 
						|
    : ConvBufCommonExecution(op->main_as_Convolution2D(), backend) {
 | 
						|
    mOpenCLBackend      = static_cast<OpenCLBackend *>(backend);
 | 
						|
    mCon2dParams        = op->main_as_Convolution2D();
 | 
						|
    mConv2dCommonParams = mCon2dParams->common();
 | 
						|
    mStrides            = {mConv2dCommonParams->strideY(), mConv2dCommonParams->strideX()};
 | 
						|
    mDilations          = {mConv2dCommonParams->dilateY(), mConv2dCommonParams->dilateX()};
 | 
						|
 | 
						|
    int kernelWidth   = mConv2dCommonParams->kernelX();
 | 
						|
    int kernelHeight  = mConv2dCommonParams->kernelY();
 | 
						|
    int outputChannel = mConv2dCommonParams->outputCount();
 | 
						|
 | 
						|
    std::vector<int> filterShape{1, outputChannel, kernelHeight, kernelWidth};
 | 
						|
    std::vector<int> filterImageShape{(int)kernelHeight * kernelWidth, (int)UP_DIV(outputChannel, 4)};
 | 
						|
 | 
						|
        
 | 
						|
    const float* filterDataPtr = nullptr;
 | 
						|
    int filterDataSize   = 0;
 | 
						|
    std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
 | 
						|
    ConvolutionCommon::getConvParameters(&quanCommon, mCon2dParams, &filterDataPtr, &filterDataSize);
 | 
						|
 | 
						|
    mFilter.reset(Tensor::createDevice<float>({1, ROUND_UP(filterImageShape[1], 2)/*for kernel C8 read*/, 1, 4 * filterImageShape[0]}));
 | 
						|
    std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>(filterShape));
 | 
						|
        
 | 
						|
    int buffer_size = filterBuffer->elementSize();
 | 
						|
    if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
 | 
						|
        buffer_size *= sizeof(half_float::half);
 | 
						|
    } else {
 | 
						|
        buffer_size *= sizeof(float);
 | 
						|
    }
 | 
						|
    cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
 | 
						|
    filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
 | 
						|
    cl_int error;
 | 
						|
    auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
 | 
						|
    if(ptrCL != nullptr && error == CL_SUCCESS){
 | 
						|
        if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
 | 
						|
            for (int i = 0; i < filterBuffer->elementSize(); i++) {
 | 
						|
                ((half_float::half *)ptrCL)[i] = (half_float::half)(filterDataPtr[i]);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            ::memcpy(ptrCL, filterDataPtr, filterBuffer->size());
 | 
						|
        }
 | 
						|
    }else{
 | 
						|
        MNN_ERROR("Map error ptrCL == nullptr \n");
 | 
						|
    }
 | 
						|
    mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
 | 
						|
 | 
						|
    mOpenCLBackend->onAcquireBuffer(mFilter.get(), Backend::STATIC);
 | 
						|
    MNN::OpenCL::BufferConvertor bufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
 | 
						|
        
 | 
						|
    bool needTrans = false;
 | 
						|
    if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf() == false){
 | 
						|
        needTrans = true;
 | 
						|
    }
 | 
						|
    bufferConvertor.convertToNC4HW4Buffer(filterBuffer.get(), MNN::OpenCL::DW_CONV2D_FILTER, mFilter.get(), needTrans);
 | 
						|
    auto runtime = mOpenCLBackend->getOpenCLRuntime();
 | 
						|
    std::string kernelName = "depthwise_conv2d_c4h1w2";
 | 
						|
    if (mConv2dCommonParams->strideX() == 1 && mConv2dCommonParams->strideY() == 1 &&
 | 
						|
        mConv2dCommonParams->dilateX() == 1 && mConv2dCommonParams->dilateY() == 1) {
 | 
						|
        mStride_1 = true;
 | 
						|
    }
 | 
						|
    if(mStride_1) {
 | 
						|
        kernelName = "depthwise_conv2d_s1_c4h1w4";
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (mConv2dCommonParams->relu() == true) {
 | 
						|
        mBuildOptions.emplace("-DRELU");
 | 
						|
    } else if (mConv2dCommonParams->relu6() == true) {
 | 
						|
        mBuildOptions.emplace("-DRELU6");
 | 
						|
    }
 | 
						|
 | 
						|
    mKernel           = runtime->buildKernel("depthwise_conv2d_buf", kernelName, mBuildOptions);
 | 
						|
    mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
 | 
						|
}
 | 
						|
 | 
						|
DepthwiseConvBufExecution::~DepthwiseConvBufExecution() {
 | 
						|
    mOpenCLBackend->onReleaseBuffer(mFilter.get(), Backend::STATIC);
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode DepthwiseConvBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | 
						|
    auto input                   = inputs[0];
 | 
						|
    auto output                  = outputs[0];
 | 
						|
    std::vector<int> inputShape  = tensorShapeFormat(input);
 | 
						|
    std::vector<int> outputShape = tensorShapeFormat(output);
 | 
						|
 | 
						|
    auto padding = ConvolutionCommon::convolutionPad(input, output, mConv2dCommonParams);
 | 
						|
    mPaddings[0] = padding.second;//padY
 | 
						|
    mPaddings[1] = padding.first;//padX
 | 
						|
    
 | 
						|
    const int outputHeight = outputShape.at(1);
 | 
						|
    const int outputWidth  = outputShape.at(2);
 | 
						|
    const int outputChannel  = outputShape.at(3);
 | 
						|
 | 
						|
    const int inputHeight   = inputShape.at(1);
 | 
						|
    const int inputWidth    = inputShape.at(2);
 | 
						|
    const int inputChannels = inputShape.at(3);
 | 
						|
 | 
						|
    const int inputChannelBlocks = UP_DIV(inputChannels, 4);
 | 
						|
    const int filterHeight       = mCon2dParams->common()->kernelY();
 | 
						|
    const int filterWidth        = mCon2dParams->common()->kernelX();
 | 
						|
    
 | 
						|
    int inputImageShape[2]  = {inputHeight, inputWidth};
 | 
						|
    int outputImageShape[2] = {outputHeight, outputWidth};
 | 
						|
    int strideShape[2]      = {mStrides[0], mStrides[1]};
 | 
						|
    int paddingShape[2]     = {mPaddings[0], mPaddings[1]};
 | 
						|
    int kernelShape[2]      = {filterHeight, filterWidth};
 | 
						|
    int dilationShape[2]    = {mDilations[0], mDilations[1]};
 | 
						|
    
 | 
						|
    if(mStride_1) {
 | 
						|
        // {"depthwise_conv2d_s1_c4h1w4", "depthwise_conv2d_s1_c8h1w4", "depthwise_conv2d_s1_c8h1w2"};
 | 
						|
        const int total_kernel = 3;
 | 
						|
        std::string kernelName[total_kernel] = {"depthwise_conv2d_s1_c4h1w4", "depthwise_conv2d_s1_c8h1w4", "depthwise_conv2d_s1_c8h1w2"};
 | 
						|
        int itemC[total_kernel] = {4, 8, 8};
 | 
						|
        int itemW[total_kernel] = {4, 4, 2};
 | 
						|
        int itemH[total_kernel] = {1, 1, 1};
 | 
						|
 | 
						|
        int actual_kernel = total_kernel;
 | 
						|
        
 | 
						|
        
 | 
						|
        if(kernelShape[0]==3 && kernelShape[1]==3 && paddingShape[0]==1 && paddingShape[1]==1) {
 | 
						|
            //{"depthwise_conv2d_k3s1p1_c4h1w2", "depthwise_conv2d_k3s1p1_c4h2w2"}
 | 
						|
            actual_kernel = 2;
 | 
						|
            kernelName[0] = "depthwise_conv2d_k3s1p1_c4h1w2";
 | 
						|
            itemC[0]      = 4;
 | 
						|
            itemW[0]      = 2;
 | 
						|
            itemH[0]      = 1;
 | 
						|
 | 
						|
            kernelName[1] = "depthwise_conv2d_k3s1p1_c4h2w2";
 | 
						|
            itemC[1]      = 4;
 | 
						|
            itemW[1]      = 2;
 | 
						|
            itemH[1]      = 2;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
 | 
						|
            actual_kernel = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        cl::Kernel kernel[total_kernel];
 | 
						|
        std::vector<uint32_t> globalWorkSize[total_kernel];
 | 
						|
        std::vector<uint32_t> localWorkSize[total_kernel];
 | 
						|
        std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
 | 
						|
        for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
 | 
						|
            kernel[knl_idx]        = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[knl_idx], mBuildOptions);
 | 
						|
            uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
 | 
						|
                        
 | 
						|
            globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * UP_DIV(outputShape.at(1), itemH[knl_idx]))};
 | 
						|
            
 | 
						|
            uint32_t idx            = 0;
 | 
						|
            kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][0]);
 | 
						|
            kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][1]);
 | 
						|
            kernel[knl_idx].setArg(idx++, openCLBuffer(input));
 | 
						|
            kernel[knl_idx].setArg(idx++, openCLBuffer(mFilter.get()));
 | 
						|
            kernel[knl_idx].setArg(idx++, openCLBuffer(mBias.get()));
 | 
						|
            kernel[knl_idx].setArg(idx++, openCLBuffer(output));
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(inputImageShape), inputImageShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, static_cast<int>(inputChannels));
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(outputImageShape), outputImageShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(kernelShape), kernelShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(paddingShape), paddingShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(dilationShape), dilationShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(strideShape), strideShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, UP_DIV(outputWidth, itemW[knl_idx]));
 | 
						|
            kernel[knl_idx].setArg(idx++, UP_DIV(outputChannel, 4));
 | 
						|
            
 | 
						|
            std::pair<std::vector<uint32_t>, int> retTune;
 | 
						|
            retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx], maxWorkGroupSize);
 | 
						|
            //printf("depthwiseCovs1 %d, %d\n", knl_idx, retTune.second);
 | 
						|
            if(min_cost.first > retTune.second) {
 | 
						|
                min_cost.first = retTune.second;
 | 
						|
                min_cost.second = knl_idx;
 | 
						|
                mLocalWorkSize = {retTune.first[0], retTune.first[1]};
 | 
						|
            }
 | 
						|
        }
 | 
						|
        int min_index  = min_cost.second;
 | 
						|
        mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
 | 
						|
        
 | 
						|
        mKernel        = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[min_index], mBuildOptions);
 | 
						|
        
 | 
						|
        uint32_t idx = 0;
 | 
						|
        mKernel.setArg(idx++, mGlobalWorkSize[0]);
 | 
						|
        mKernel.setArg(idx++, mGlobalWorkSize[1]);
 | 
						|
        mKernel.setArg(idx++, openCLBuffer(input));
 | 
						|
        mKernel.setArg(idx++, openCLBuffer(mFilter.get()));
 | 
						|
        mKernel.setArg(idx++, openCLBuffer(mBias.get()));
 | 
						|
        mKernel.setArg(idx++, openCLBuffer(output));
 | 
						|
        mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
 | 
						|
        mKernel.setArg(idx++, static_cast<int>(inputChannels));
 | 
						|
        mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
 | 
						|
        mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
 | 
						|
        mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
 | 
						|
        mKernel.setArg(idx++, sizeof(dilationShape), dilationShape);
 | 
						|
        mKernel.setArg(idx++, sizeof(strideShape), strideShape);
 | 
						|
        mKernel.setArg(idx++, UP_DIV(outputWidth, itemW[min_index]));
 | 
						|
        mKernel.setArg(idx++, UP_DIV(outputChannel, 4));
 | 
						|
        
 | 
						|
        //printf("DepthwiseConvBufs1 %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outputChannel, outputWidth);
 | 
						|
 | 
						|
    } else {
 | 
						|
        // {"depthwise_conv2d_c4h1w4", "depthwise_conv2d_c4h1w2", "depthwise_conv2d_c4h1w1"};
 | 
						|
        const int total_kernel = 3;
 | 
						|
        const std::string kernelName[total_kernel] = {"depthwise_conv2d_c4h1w1", "depthwise_conv2d_c4h1w4", "depthwise_conv2d_c4h1w2"};
 | 
						|
        int itemC[total_kernel] = {4, 4, 4};
 | 
						|
        int itemW[total_kernel] = {1, 4, 2};
 | 
						|
        
 | 
						|
        int actual_kernel = total_kernel;
 | 
						|
        if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
 | 
						|
            actual_kernel = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        cl::Kernel kernel[total_kernel];
 | 
						|
        std::vector<uint32_t> globalWorkSize[total_kernel];
 | 
						|
        std::vector<uint32_t> localWorkSize[total_kernel];
 | 
						|
        std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
 | 
						|
        for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
 | 
						|
            kernel[knl_idx]        = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[knl_idx], mBuildOptions);
 | 
						|
            uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
 | 
						|
                        
 | 
						|
            globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * outputShape.at(1))};
 | 
						|
            
 | 
						|
            uint32_t idx            = 0;
 | 
						|
            kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][0]);
 | 
						|
            kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][1]);
 | 
						|
            kernel[knl_idx].setArg(idx++, openCLBuffer(input));
 | 
						|
            kernel[knl_idx].setArg(idx++, openCLBuffer(mFilter.get()));
 | 
						|
            kernel[knl_idx].setArg(idx++, openCLBuffer(mBias.get()));
 | 
						|
            kernel[knl_idx].setArg(idx++, openCLBuffer(output));
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(inputImageShape), inputImageShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, static_cast<int>(inputChannels));
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(outputImageShape), outputImageShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(kernelShape), kernelShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(paddingShape), paddingShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(dilationShape), dilationShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, sizeof(strideShape), strideShape);
 | 
						|
            kernel[knl_idx].setArg(idx++, UP_DIV(outputWidth, itemW[knl_idx]));
 | 
						|
            kernel[knl_idx].setArg(idx++, UP_DIV(outputChannel, 4));
 | 
						|
            
 | 
						|
            std::pair<std::vector<uint32_t>, int> retTune;
 | 
						|
            retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx], maxWorkGroupSize);
 | 
						|
            //printf("depthwiseCov!! %d, %d\n", knl_idx, retTune.second);
 | 
						|
            if(min_cost.first > retTune.second) {
 | 
						|
                min_cost.first = retTune.second;
 | 
						|
                min_cost.second = knl_idx;
 | 
						|
                mLocalWorkSize = {retTune.first[0], retTune.first[1]};
 | 
						|
            }
 | 
						|
        }
 | 
						|
        int min_index  = min_cost.second;
 | 
						|
        mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
 | 
						|
        
 | 
						|
        mKernel        = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[min_index], mBuildOptions);
 | 
						|
        
 | 
						|
        
 | 
						|
        uint32_t idx = 0;
 | 
						|
        mKernel.setArg(idx++, mGlobalWorkSize[0]);
 | 
						|
        mKernel.setArg(idx++, mGlobalWorkSize[1]);
 | 
						|
        mKernel.setArg(idx++, openCLBuffer(input));
 | 
						|
        mKernel.setArg(idx++, openCLBuffer(mFilter.get()));
 | 
						|
        mKernel.setArg(idx++, openCLBuffer(mBias.get()));
 | 
						|
        mKernel.setArg(idx++, openCLBuffer(output));
 | 
						|
        mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
 | 
						|
        mKernel.setArg(idx++, static_cast<int>(inputChannels));
 | 
						|
        mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
 | 
						|
        mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
 | 
						|
        mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
 | 
						|
        mKernel.setArg(idx++, sizeof(dilationShape), dilationShape);
 | 
						|
        mKernel.setArg(idx++, sizeof(strideShape), strideShape);
 | 
						|
        mKernel.setArg(idx++, UP_DIV(outputWidth, itemW[min_index]));
 | 
						|
        mKernel.setArg(idx++, UP_DIV(outputChannel, 4));
 | 
						|
        
 | 
						|
        //printf("DepthwiseConvBuf!! %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outputChannel, outputWidth);
 | 
						|
    }
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode DepthwiseConvBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | 
						|
#ifdef LOG_VERBOSE
 | 
						|
    MNN_PRINT("start DepthwiseConvBufExecution onExecute !\n");
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef ENABLE_OPENCL_TIME_PROFILER
 | 
						|
    cl::Event event;
 | 
						|
    runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
 | 
						|
                mOpenCLBackend->getOpenCLRuntime(),
 | 
						|
                &event);
 | 
						|
    
 | 
						|
    int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
 | 
						|
    MNN_PRINT("kernel cost:%d    us DepthwiseConvBuf\n",costTime);
 | 
						|
#else
 | 
						|
    runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
 | 
						|
                mOpenCLBackend->getOpenCLRuntime());
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LOG_VERBOSE
 | 
						|
    MNN_PRINT("end DepthwiseConvBufExecution onExecute !\n");
 | 
						|
#endif
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
class DepthwiseConvolutionBufCreator : public OpenCLBackend::Creator {
 | 
						|
public:
 | 
						|
    virtual ~DepthwiseConvolutionBufCreator() = default;
 | 
						|
    virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
 | 
						|
                                const MNN::Op *op, Backend *backend) const override {
 | 
						|
        
 | 
						|
        MNN_ASSERT(inputs.size() <= 3);
 | 
						|
        if (inputs.size() == 3) {
 | 
						|
            MNN_PRINT("multi input depthwise conv for opencl buffer not supoort!\n");
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
        
 | 
						|
        MNN_ASSERT(inputs.size() == 1);
 | 
						|
        return new DepthwiseConvBufExecution(inputs, op, backend);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
OpenCLCreatorRegister<DepthwiseConvolutionBufCreator> __DepthwiseConvBuf_op(OpType_ConvolutionDepthwise, BUFFER);
 | 
						|
 | 
						|
} // namespace OpenCL
 | 
						|
} // namespace MNN
 | 
						|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
 |