mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			350 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			350 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  RasterBufExecution.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2020/05/12.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#ifndef MNN_OPENCL_BUFFER_CLOSED
 | 
						|
 | 
						|
#include "backend/opencl/execution/buffer/RasterBufExecution.hpp"
 | 
						|
#include "core/Macro.h"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
#include "core/OpCommonUtils.hpp"
 | 
						|
#include "backend/opencl/core/OpenCLBackend.hpp"
 | 
						|
 | 
						|
namespace MNN {
 | 
						|
namespace OpenCL {
 | 
						|
 | 
						|
RasterBufExecution::RasterBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
 | 
						|
    : CommonExecution(backend) {
 | 
						|
    mOpenCLBackend = (OpenCLBackend *)backend;
 | 
						|
    mOp = op;
 | 
						|
    //nothing to do
 | 
						|
}
 | 
						|
 | 
						|
ErrorCode RasterBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
 | 
						|
#ifdef LOG_VERBOSE
 | 
						|
    MNN_PRINT("start RasterBufExecution onResize !\n");
 | 
						|
#endif
 | 
						|
    mTempInput.clear();
 | 
						|
    mTempOutput = nullptr;
 | 
						|
    MNN_ASSERT(inputs.size() == 1);
 | 
						|
    MNN_ASSERT(outputs.size() == 1);
 | 
						|
    auto input = inputs[0];
 | 
						|
    auto output = outputs[0];
 | 
						|
    auto des = TensorUtils::getDescribe(input);
 | 
						|
    auto outputDes = TensorUtils::getDescribe(output);
 | 
						|
    mNeedZero = !TensorUtils::regionIsFull(input);
 | 
						|
    auto regionNum = des->regions.size();
 | 
						|
    auto runtime = ((OpenCLBackend *)backend())->getOpenCLRuntime();
 | 
						|
    
 | 
						|
    mFast = false;
 | 
						|
    if (outputDes->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
 | 
						|
        mFast = true;
 | 
						|
        for (int i=0; i< des->regions.size(); ++i) {
 | 
						|
            auto& slice = des->regions[i];
 | 
						|
            if (TensorUtils::getDescribe(slice.origin)->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
 | 
						|
                mFast = false;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if (!OpCommonUtils::canBlitFast(slice, output)) {
 | 
						|
                mFast = false;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if(mFast)
 | 
						|
    {
 | 
						|
        mUnits.resize(regionNum);
 | 
						|
        int kernel_idx = 0;
 | 
						|
        
 | 
						|
        if(mNeedZero)
 | 
						|
        {
 | 
						|
            mUnits.resize(regionNum + 1);
 | 
						|
            auto outputShape    = tensorShapeFormat(output);
 | 
						|
            int region[] = {outputShape[0], ROUND_UP(outputShape[3], 4), outputShape[1], outputShape[2]};//nc4hw
 | 
						|
            Unit &unit          = mUnits[kernel_idx++];
 | 
						|
            unit.kernel         = runtime->buildKernel("raster", "buffer_set_zero", {});
 | 
						|
            unit.localWorkSize  = {8, 8};
 | 
						|
            unit.globalWorkSize = {(uint32_t)UP_DIV((region[2] * region[3]), 8)*8,
 | 
						|
                                   (uint32_t)UP_DIV((region[0] * region[1]), 8)*8};
 | 
						|
 | 
						|
            int global_dim0 = region[2] * region[3];
 | 
						|
            int global_dim1 = region[0] * region[1];
 | 
						|
            
 | 
						|
            uint32_t idx   = 0;
 | 
						|
            cl_int ret = CL_SUCCESS;
 | 
						|
            ret |= unit.kernel.setArg(idx++, global_dim0);
 | 
						|
            ret |= unit.kernel.setArg(idx++, global_dim1);
 | 
						|
            ret |= unit.kernel.setArg(idx++, openCLBuffer(output));
 | 
						|
            if(ret != CL_SUCCESS)
 | 
						|
            {
 | 
						|
                MNN_PRINT("setArg err %d\n", (int)ret);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // nc4hw4 buffer raster
 | 
						|
        for (auto& slice : des->regions)
 | 
						|
        {
 | 
						|
            Tensor::InsideDescribe::Region C4Region;
 | 
						|
            OpCommonUtils::turnToPackRegion(slice, C4Region, output, 4);
 | 
						|
 | 
						|
            Unit &unit          = mUnits[kernel_idx++];
 | 
						|
            unit.kernel         = runtime->buildKernel("raster_buf", "raster_nc4hw4_buffer", {});
 | 
						|
 | 
						|
            const std::vector<uint32_t> gws =  {(uint32_t)C4Region.size[2],
 | 
						|
                                                    (uint32_t)C4Region.size[1],
 | 
						|
                                                    (uint32_t)C4Region.size[0]};
 | 
						|
            uint32_t mMaxWorkGroupSize      = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
 | 
						|
 | 
						|
            auto outputShape    = tensorShapeFormat(output);
 | 
						|
            auto sliceShape    = tensorShapeFormat(slice.origin);
 | 
						|
 | 
						|
            uint32_t idx   = 0;
 | 
						|
            cl_int ret = CL_SUCCESS;
 | 
						|
            ret |= unit.kernel.setArg(idx++, gws[0]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, gws[1]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, gws[2]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, openCLBuffer(slice.origin));
 | 
						|
            ret |= unit.kernel.setArg(idx++, C4Region.src.offset);
 | 
						|
            ret |= unit.kernel.setArg(idx++, C4Region.src.stride[0]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, C4Region.src.stride[1]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, C4Region.src.stride[2]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, sliceShape[1]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, sliceShape[2]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, sliceShape[3]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, openCLBuffer(output));
 | 
						|
            ret |= unit.kernel.setArg(idx++, C4Region.dst.offset);
 | 
						|
            ret |= unit.kernel.setArg(idx++, C4Region.dst.stride[0]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, C4Region.dst.stride[1]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, C4Region.dst.stride[2]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, outputShape[1]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, outputShape[2]);
 | 
						|
            ret |= unit.kernel.setArg(idx++, outputShape[3]);
 | 
						|
            if(ret != CL_SUCCESS)
 | 
						|
            {
 | 
						|
                MNN_PRINT("setArg err %d\n", (int)ret);
 | 
						|
            }
 | 
						|
            std::string name = "raster_nc4hw4_buffer";
 | 
						|
            const std::vector<uint32_t> lws = localWS3DDefault(gws, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, unit.kernel).first;
 | 
						|
            
 | 
						|
            unit.localWorkSize = {lws[0], lws[1], lws[2]};
 | 
						|
            
 | 
						|
            unit.globalWorkSize = {ROUND_UP(gws[0], std::max((uint32_t)1, lws[0])),
 | 
						|
                                   ROUND_UP(gws[1], std::max((uint32_t)1, lws[1])),
 | 
						|
                                   ROUND_UP(gws[2], std::max((uint32_t)1, lws[2]))};
 | 
						|
        }
 | 
						|
        if(mNeedZero)
 | 
						|
        {
 | 
						|
            MNN_ASSERT((regionNum+1==kernel_idx));
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            MNN_ASSERT((regionNum==kernel_idx));
 | 
						|
        }
 | 
						|
        return NO_ERROR;
 | 
						|
    }
 | 
						|
 | 
						|
    // Alloc Temp buffer
 | 
						|
    auto bufferPool     = ((OpenCLBackend *)backend())->getBufferPool();
 | 
						|
    auto bufferUnitSize = runtime->isSupportedFP16() ? sizeof(half_float::half) : sizeof(float);
 | 
						|
    for(int i=0; i< regionNum; ++i)
 | 
						|
    {
 | 
						|
        auto origin = des->regions[i].origin;
 | 
						|
        if(mTempInput.find(origin) != mTempInput.end())
 | 
						|
        {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        auto buffer = bufferPool->alloc(origin->elementSize()*bufferUnitSize);
 | 
						|
        mTempInput.insert(std::make_pair(origin, buffer));
 | 
						|
    }
 | 
						|
    mTempOutput         = bufferPool->alloc(output->elementSize() * bufferUnitSize);
 | 
						|
 | 
						|
    for(auto& iter : mTempInput)
 | 
						|
    {
 | 
						|
        bufferPool->recycle(iter.second);
 | 
						|
    }
 | 
						|
    bufferPool->recycle(mTempOutput);
 | 
						|
    
 | 
						|
    auto originNum = mTempInput.size();
 | 
						|
    mUnits.resize(regionNum + originNum + 1);
 | 
						|
    
 | 
						|
    int kernel_idx = 0;
 | 
						|
    if(mNeedZero)
 | 
						|
    {
 | 
						|
        mUnits.resize(regionNum + originNum + 2);
 | 
						|
        auto outputShape    = tensorShapeFormat(output);
 | 
						|
        int region[] = {outputShape[0], ROUND_UP(outputShape[3], 4), outputShape[1], outputShape[2]};//nhwc
 | 
						|
        Unit &unit          = mUnits[kernel_idx++];
 | 
						|
        unit.kernel         = runtime->buildKernel("raster", "buffer_set_zero", {});
 | 
						|
        unit.localWorkSize  = {8, 8};
 | 
						|
        unit.globalWorkSize = {(uint32_t)UP_DIV((region[2] * region[3]), 8)*8,
 | 
						|
                               (uint32_t)UP_DIV((region[0] * region[1]), 8)*8};
 | 
						|
        
 | 
						|
        int global_dim0 = region[2] * region[3];
 | 
						|
        int global_dim1 = region[0] * region[1];
 | 
						|
        
 | 
						|
        uint32_t idx   = 0;
 | 
						|
        cl_int ret = CL_SUCCESS;
 | 
						|
        ret |= unit.kernel.setArg(idx++, global_dim0);
 | 
						|
        ret |= unit.kernel.setArg(idx++, global_dim1);
 | 
						|
        ret |= unit.kernel.setArg(idx++, *mTempOutput);
 | 
						|
        if(ret != CL_SUCCESS)
 | 
						|
        {
 | 
						|
            MNN_PRINT("setArg err %d\n", (int)ret);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // nc4hw4 buffer to buffer
 | 
						|
    for(auto& iter : mTempInput)
 | 
						|
    {
 | 
						|
        Tensor* origin = iter.first;
 | 
						|
        std::vector<int> regionShape = tensorShapeFormat(origin);
 | 
						|
        int inputWH[]      = {regionShape[2], regionShape[1]};
 | 
						|
        int region[]       = {regionShape[0], UP_DIV(regionShape[3], 4), regionShape[1], regionShape[2]};
 | 
						|
                
 | 
						|
        Unit &unit          = mUnits[kernel_idx++];
 | 
						|
        
 | 
						|
        if(TensorUtils::getDescribe(origin)->dimensionFormat == MNN_DATA_FORMAT_NHWC)// Image to nhwc buffer
 | 
						|
        {
 | 
						|
            unit.kernel         = runtime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nhwc_buffer", {});
 | 
						|
        }
 | 
						|
        else //Image to nchw buffer
 | 
						|
        {
 | 
						|
            unit.kernel         = runtime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nchw_buffer", {});
 | 
						|
        }
 | 
						|
        unit.localWorkSize  = {16, 16};
 | 
						|
        unit.globalWorkSize = {(uint32_t)UP_DIV(region[3] * region[1], 16) * 16,
 | 
						|
                               (uint32_t)UP_DIV(region[2] * region[0], 16) * 16};
 | 
						|
        
 | 
						|
        int global_dim0 = region[3] * region[1];
 | 
						|
        int global_dim1 = region[2] * region[0];
 | 
						|
 | 
						|
        //MNN_CHECK_CL_SUCCESS
 | 
						|
        uint32_t idx   = 0;
 | 
						|
        cl_int ret = CL_SUCCESS;
 | 
						|
        ret |= unit.kernel.setArg(idx++, global_dim0);
 | 
						|
        ret |= unit.kernel.setArg(idx++, global_dim1);
 | 
						|
        ret |= unit.kernel.setArg(idx++, *(iter.second));
 | 
						|
        ret |= unit.kernel.setArg(idx++, inputWH[1]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, inputWH[0]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, regionShape[3]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, openCLBuffer(origin));
 | 
						|
        
 | 
						|
        if(ret != CL_SUCCESS)
 | 
						|
        {
 | 
						|
            MNN_PRINT("setArg err %d\n", (int)ret);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // buffer raster
 | 
						|
    for (auto& slice : des->regions)
 | 
						|
    {
 | 
						|
        Unit &unit          = mUnits[kernel_idx++];
 | 
						|
        unit.kernel         = runtime->buildKernel("raster_buf", "raster_buffer", {});
 | 
						|
 | 
						|
        const std::vector<uint32_t> gws =  {(uint32_t)slice.size[2],
 | 
						|
                                                (uint32_t)slice.size[1],
 | 
						|
                                                (uint32_t)slice.size[0]};
 | 
						|
        uint32_t mMaxWorkGroupSize      = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
 | 
						|
 | 
						|
        uint32_t idx   = 0;
 | 
						|
        cl_int ret = CL_SUCCESS;
 | 
						|
        ret |= unit.kernel.setArg(idx++, gws[0]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, gws[1]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, gws[2]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, *(mTempInput[slice.origin]));
 | 
						|
        ret |= unit.kernel.setArg(idx++, slice.src.offset);
 | 
						|
        ret |= unit.kernel.setArg(idx++, slice.src.stride[0]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, slice.src.stride[1]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, slice.src.stride[2]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, *mTempOutput);
 | 
						|
        ret |= unit.kernel.setArg(idx++, slice.dst.offset);
 | 
						|
        ret |= unit.kernel.setArg(idx++, slice.dst.stride[0]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, slice.dst.stride[1]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, slice.dst.stride[2]);
 | 
						|
        if(ret != CL_SUCCESS)
 | 
						|
        {
 | 
						|
            MNN_PRINT("setArg err %d\n", (int)ret);
 | 
						|
        }
 | 
						|
        
 | 
						|
        std::string name = "raster_buffer";
 | 
						|
        const std::vector<uint32_t> lws = localWS3DDefault(gws, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, unit.kernel).first;
 | 
						|
        
 | 
						|
        unit.localWorkSize = {lws[0], lws[1], lws[2]};
 | 
						|
        
 | 
						|
        unit.globalWorkSize = {ROUND_UP(gws[0], std::max((uint32_t)1, lws[0])),
 | 
						|
                               ROUND_UP(gws[1], std::max((uint32_t)1, lws[1])),
 | 
						|
                               ROUND_UP(gws[2], std::max((uint32_t)1, lws[2]))};
 | 
						|
    }
 | 
						|
    
 | 
						|
    //buffer to nc4hw4 buffer
 | 
						|
    {
 | 
						|
        auto outputShape    = tensorShapeFormat(output);
 | 
						|
        int wh[]     = {outputShape[2], outputShape[1]};
 | 
						|
        int region[] = {outputShape[0], UP_DIV(outputShape[3], 4), outputShape[1], outputShape[2]};
 | 
						|
 | 
						|
        Unit &unit          = mUnits[kernel_idx++];
 | 
						|
        if(outputDes->dimensionFormat == MNN_DATA_FORMAT_NHWC)//nhwc buffer to Image
 | 
						|
        {
 | 
						|
            unit.kernel         = runtime->buildKernel("buffer_convert_buf", "nhwc_buffer_to_nc4hw4_buffer", {});
 | 
						|
        }
 | 
						|
        else //nchw buffer to Image
 | 
						|
        {
 | 
						|
            unit.kernel         = runtime->buildKernel("buffer_convert_buf", "nchw_buffer_to_nc4hw4_buffer", {});
 | 
						|
        }
 | 
						|
        unit.localWorkSize  = {16, 16};
 | 
						|
        unit.globalWorkSize = {(uint32_t)UP_DIV(region[3] * region[1], 16) * 16,
 | 
						|
                               (uint32_t)UP_DIV(region[2] * region[0], 16) * 16};
 | 
						|
        
 | 
						|
        int global_dim0 = region[3] * region[1];
 | 
						|
        int global_dim1 = region[2] * region[0];
 | 
						|
        
 | 
						|
        uint32_t idx   = 0;
 | 
						|
        cl_int ret = CL_SUCCESS;
 | 
						|
        ret |= unit.kernel.setArg(idx++, global_dim0);
 | 
						|
        ret |= unit.kernel.setArg(idx++, global_dim1);
 | 
						|
        ret |= unit.kernel.setArg(idx++, *mTempOutput);
 | 
						|
        ret |= unit.kernel.setArg(idx++, wh[1]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, wh[0]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, outputShape[3]);
 | 
						|
        ret |= unit.kernel.setArg(idx++, openCLBuffer(output));
 | 
						|
        if(ret != CL_SUCCESS)
 | 
						|
        {
 | 
						|
            MNN_PRINT("setArg err %d\n", (int)ret);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    //kernel num check
 | 
						|
    if(mNeedZero)
 | 
						|
    {
 | 
						|
        MNN_ASSERT((kernel_idx==regionNum + originNum + 2));
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        MNN_ASSERT((kernel_idx==regionNum + originNum + 1));
 | 
						|
    }
 | 
						|
    
 | 
						|
#ifdef LOG_VERBOSE
 | 
						|
    MNN_PRINT("end RasterBufExecution onResize !\n");
 | 
						|
#endif
 | 
						|
    return NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
class RasterCreator : public OpenCLBackend::Creator {
 | 
						|
public:
 | 
						|
    virtual ~RasterCreator() = default;
 | 
						|
    virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const MNN::Op *op,
 | 
						|
                                Backend *backend) const override {
 | 
						|
        return new RasterBufExecution(inputs, op, backend);
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
OpenCLCreatorRegister<RasterCreator> __RasterBuf_op(OpType_Raster, BUFFER);
 | 
						|
} // namespace OpenCL
 | 
						|
} // namespace MNN
 | 
						|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
 |