MNN/source/backend/opencl/execution/NormalizeExecution.cpp

185 lines
6.5 KiB
C++

//
// NormalizeExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "execution/NormalizeExecution.hpp"
#include "Macro.h"
#include "TensorUtils.hpp"
#include "core/OpenCLBackend.hpp"
#include "core/OpenCLRunningUtils.hpp"
namespace MNN {
namespace OpenCL {
NormalizeExecution::NormalizeExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: Execution(backend) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start NormalizeExecution init !\n");
#endif
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
mNormalizeParams = op->main_as_Normalize();
int scaleSize = mNormalizeParams->scale()->size();
const float *scaleData = mNormalizeParams->scale()->data();
cl::Buffer scaleBuffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
UP_DIV(scaleSize, 4) * 4 * sizeof(float));
auto biasPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
scaleBuffer, true, CL_MAP_WRITE, 0, ALIGN_UP4(scaleSize) * sizeof(float));
::memset(biasPtrCL, 0, ALIGN_UP4(scaleSize) * sizeof(float));
::memcpy(biasPtrCL, scaleData, scaleSize * sizeof(float));
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(scaleBuffer, biasPtrCL);
mScale.reset(Tensor::createDevice<float>({1, 1, 1, scaleSize}));
mOpenCLBackend->onAcquireBuffer(mScale.get(), Backend::STATIC);
copyBufferToImage(mOpenCLBackend->getOpenCLRuntime(), scaleBuffer, openCLImage(mScale.get()), UP_DIV(scaleSize, 4),
1);
mEps = mNormalizeParams->eps();
mAreadySetArg = false;
#ifdef LOG_VERBOSE
MNN_PRINT("end NormalizeExecution init !\n");
#endif
}
NormalizeExecution::~NormalizeExecution() {
backend()->onReleaseBuffer(mScale.get(), Backend::STATIC);
}
ErrorCode NormalizeExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start NormalizeExecution onResize !\n");
#endif
auto runtime = mOpenCLBackend->getOpenCLRuntime();
if (mKernel.get() == nullptr) {
std::set<std::string> buildOptions;
std::string kernelName = "normalize_kernel";
mKernel = runtime->buildKernel("normalize", kernelName, buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
#ifdef LOG_VERBOSE
MNN_PRINT("end NormalizeExecution onResize !\n");
#endif
return NO_ERROR;
}
std::vector<uint32_t> NormalizeExecution::normalizeLocalWS(const std::vector<uint32_t> &gws,
const uint32_t maxWorkGroupSize) {
std::vector<uint32_t> lws(4, 0);
GpuType gpuType = mOpenCLBackend->getOpenCLRuntime()->getGpuType();
uint32_t deviceComputeUnits = mOpenCLBackend->getOpenCLRuntime()->deviceComputeUnits();
if (gpuType == GpuType::ADRENO) {
int coreNum = deviceComputeUnits;
int remain = gws[0] % coreNum;
int groupSize = gws[0] / coreNum;
if (remain == 0) {
lws[0] = groupSize;
} else {
while (groupSize) {
int remain = gws[0] % groupSize;
if (remain == 0 && groupSize <= maxWorkGroupSize) {
lws[0] = groupSize;
break;
}
groupSize--;
}
}
lws[0] = std::max<uint32_t>(std::min<uint32_t>(maxWorkGroupSize, lws[0]), 1);
remain = gws[1] % coreNum;
groupSize = gws[1] / coreNum;
if (remain == 0) {
lws[1] = groupSize;
} else {
while (groupSize) {
int remain = gws[1] % groupSize;
if (remain == 0) {
lws[1] = groupSize;
break;
}
groupSize--;
}
}
lws[1] = std::max<uint32_t>(std::min<uint32_t>(maxWorkGroupSize / lws[0], lws[1]), 1);
remain = gws[2] % coreNum;
groupSize = gws[2] / coreNum;
if (remain == 0) {
lws[2] = groupSize;
} else {
while (groupSize) {
int remain = gws[2] % groupSize;
if (remain == 0) {
lws[2] = groupSize;
break;
}
groupSize--;
}
}
lws[2] = std::max<uint32_t>(std::min<uint32_t>(maxWorkGroupSize / (lws[0] * lws[1]), lws[2]), 1);
} else {
lws[0] = deviceComputeUnits * 2;
lws[1] = 4;
lws[2] = 1;
}
return lws;
}
ErrorCode NormalizeExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start NormalizeExecution onExecute !\n");
#endif
auto runtime = mOpenCLBackend->getOpenCLRuntime();
if (!mAreadySetArg) {
Tensor *input = inputs[0];
Tensor *output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int batch = inputShape.at(0);
const int height = inputShape.at(1);
const int width = inputShape.at(2);
const int channels = inputShape.at(3);
const int channelBlocks = UP_DIV(channels, 4);
const int remainChannels = channelBlocks * 4 - channels;
mGlobalWorkSize = {static_cast<uint32_t>(channelBlocks), static_cast<uint32_t>(width),
static_cast<uint32_t>(height * batch)};
uint32_t idx = 0;
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, mGlobalWorkSize[2]);
mKernel.setArg(idx++, openCLImage(input));
mKernel.setArg(idx++, openCLImage(mScale.get()));
mKernel.setArg(idx++, mEps);
mKernel.setArg(idx++, channelBlocks);
mKernel.setArg(idx++, remainChannels);
mKernel.setArg(idx++, openCLImage(output));
mLocalWorkSize = normalizeLocalWS(mGlobalWorkSize, mMaxWorkGroupSize);
mAreadySetArg = true;
}
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize, runtime);
#ifdef LOG_VERBOSE
MNN_PRINT("end NormalizeExecution onExecute !\n");
#endif
return NO_ERROR;
}
OpenCLCreatorRegister<TypedCreator<NormalizeExecution>> __normalize_op(OpType_Normalize);
} // namespace OpenCL
} // namespace MNN