mirror of https://github.com/alibaba/MNN.git
239 lines
12 KiB
C++
239 lines
12 KiB
C++
//
|
|
// CoreMLBinary.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2021/03/24.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "CoreMLBinary.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
|
|
|
|
CoreMLBinary::CoreMLBinary(MNN::Backend *b, const MNN::Op *op, const std::vector<Tensor *> &inputs, const std::vector<MNN::Tensor *> &outputs) : CoreMLCommonExecution(b, op) {
|
|
initLayer();
|
|
}
|
|
|
|
ErrorCode CoreMLBinary::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
MNN_ASSERT(inputs.size() == 2 && outputs.size() == 1);
|
|
BinaryOpOperation binaryType;
|
|
if (mOp->type() == OpType_BinaryOp) {
|
|
binaryType = static_cast<BinaryOpOperation>(mOp->main_as_BinaryOp()->opType());
|
|
} else if (mOp->type() == OpType_Eltwise) {
|
|
auto elemType = mOp->main_as_Eltwise()->type();
|
|
switch (elemType) {
|
|
case EltwiseType_PROD:
|
|
binaryType = BinaryOpOperation_MUL;
|
|
break;
|
|
case EltwiseType_SUM:
|
|
binaryType = BinaryOpOperation_ADD;
|
|
break;
|
|
case EltwiseType_SUB:
|
|
binaryType = BinaryOpOperation_SUB;
|
|
break;
|
|
case EltwiseType_MAXIMUM:
|
|
binaryType = BinaryOpOperation_MAXIMUM;
|
|
break;
|
|
}
|
|
}
|
|
bool oneInput = false;
|
|
float constVal = 0.f;
|
|
const Tensor* input = nullptr;
|
|
if (TensorUtils::getDescribe(inputs[0])->usage == Tensor::InsideDescribe::CONSTANT && 1 == TensorUtils::getRawSize(inputs[0])) {
|
|
constVal = inputs[0]->host<float>()[0];
|
|
input = inputs[1];
|
|
} else if (TensorUtils::getDescribe(inputs[1])->usage == Tensor::InsideDescribe::CONSTANT && 1 == TensorUtils::getRawSize(inputs[1])) {
|
|
constVal = inputs[1]->host<float>()[0];
|
|
input = inputs[0];
|
|
}
|
|
switch (binaryType) {
|
|
case BinaryOpOperation_ADD:
|
|
if (input) {
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ADD;
|
|
mLayer_->add = mCoreMLBackend->create<CoreML__Specification__AddLayerParams>();
|
|
core_ml__specification__add_layer_params__init(mLayer_->add);
|
|
mLayer_->add->alpha = constVal;
|
|
oneInput = true;
|
|
} else {
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ADD_BROADCASTABLE;
|
|
mLayer_->addbroadcastable = mCoreMLBackend->create<CoreML__Specification__AddBroadcastableLayerParams>();
|
|
core_ml__specification__add_broadcastable_layer_params__init(mLayer_->addbroadcastable);
|
|
}
|
|
break;
|
|
case BinaryOpOperation_SUB:
|
|
if (input) {
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ACTIVATION;
|
|
mLayer_->activation = mCoreMLBackend->create<CoreML__Specification__ActivationParams>();
|
|
core_ml__specification__activation_params__init(mLayer_->activation);
|
|
mLayer_->activation->nonlinearity_type_case = CORE_ML__SPECIFICATION__ACTIVATION_PARAMS__NONLINEARITY_TYPE_LINEAR;
|
|
mLayer_->activation->linear = mCoreMLBackend->create<CoreML__Specification__ActivationLinear>();
|
|
core_ml__specification__activation_linear__init(mLayer_->activation->linear);
|
|
mLayer_->activation->linear->alpha = 1;
|
|
mLayer_->activation->linear->beta = -constVal;
|
|
oneInput = true;
|
|
} else {
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_SUBTRACT_BROADCASTABLE;
|
|
mLayer_->subtractbroadcastable = mCoreMLBackend->create<CoreML__Specification__SubtractBroadcastableLayerParams>();
|
|
core_ml__specification__subtract_broadcastable_layer_params__init(mLayer_->subtractbroadcastable);
|
|
}
|
|
break;
|
|
case BinaryOpOperation_MUL:
|
|
if (input) {
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MULTIPLY;
|
|
mLayer_->multiply = mCoreMLBackend->create<CoreML__Specification__MultiplyLayerParams>();
|
|
core_ml__specification__multiply_layer_params__init(mLayer_->multiply);
|
|
mLayer_->multiply->alpha = constVal;
|
|
oneInput = true;
|
|
} else {
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MULTIPLY_BROADCASTABLE;
|
|
mLayer_->multiplybroadcastable = mCoreMLBackend->create<_CoreML__Specification__MultiplyBroadcastableLayerParams>();
|
|
core_ml__specification__multiply_broadcastable_layer_params__init(mLayer_->multiplybroadcastable);
|
|
}
|
|
break;
|
|
case BinaryOpOperation_DIV:
|
|
case BinaryOpOperation_REALDIV:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_DIVIDE_BROADCASTABLE;
|
|
mLayer_->dividebroadcastable = mCoreMLBackend->create<CoreML__Specification__DivideBroadcastableLayerParams>();
|
|
core_ml__specification__divide_broadcastable_layer_params__init(mLayer_->dividebroadcastable);
|
|
break;
|
|
case BinaryOpOperation_POW:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_POW_BROADCASTABLE;
|
|
mLayer_->powbroadcastable = mCoreMLBackend->create<CoreML__Specification__PowBroadcastableLayerParams>();
|
|
core_ml__specification__pow_broadcastable_layer_params__init(mLayer_->powbroadcastable);
|
|
break;
|
|
case BinaryOpOperation_MINIMUM:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MIN;
|
|
mLayer_->min = mCoreMLBackend->create<CoreML__Specification__MinLayerParams>();
|
|
core_ml__specification__min_layer_params__init(mLayer_->min);
|
|
break;
|
|
case BinaryOpOperation_MAXIMUM:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MAX;
|
|
mLayer_->max = mCoreMLBackend->create<CoreML__Specification__MaxLayerParams>();
|
|
core_ml__specification__max_layer_params__init(mLayer_->max);
|
|
break;
|
|
case BinaryOpOperation_GREATER:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_GREATER_THAN;
|
|
mLayer_->greaterthan = mCoreMLBackend->create<CoreML__Specification__GreaterThanLayerParams>();
|
|
core_ml__specification__greater_than_layer_params__init(mLayer_->greaterthan);
|
|
if (input) {
|
|
mLayer_->greaterthan->alpha = constVal;
|
|
oneInput = true;
|
|
}
|
|
break;
|
|
case BinaryOpOperation_GREATER_EQUAL:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_GREATER_EQUAL;
|
|
mLayer_->greaterequal = mCoreMLBackend->create<CoreML__Specification__GreaterEqualLayerParams>();
|
|
core_ml__specification__greater_equal_layer_params__init(mLayer_->greaterequal);
|
|
if (input) {
|
|
mLayer_->greaterequal->alpha = constVal;
|
|
oneInput = true;
|
|
}
|
|
break;
|
|
case BinaryOpOperation_LESS:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_LESS_THAN;
|
|
mLayer_->lessthan = mCoreMLBackend->create<CoreML__Specification__LessThanLayerParams>();
|
|
core_ml__specification__less_than_layer_params__init(mLayer_->lessthan);
|
|
if (input) {
|
|
mLayer_->lessthan->alpha = constVal;
|
|
oneInput = true;
|
|
}
|
|
break;
|
|
case BinaryOpOperation_LESS_EQUAL:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_LESS_EQUAL;
|
|
mLayer_->lessequal = mCoreMLBackend->create<CoreML__Specification__LessEqualLayerParams>();
|
|
core_ml__specification__less_equal_layer_params__init(mLayer_->lessequal);
|
|
if (input) {
|
|
mLayer_->lessequal->alpha = constVal;
|
|
oneInput = true;
|
|
}
|
|
break;
|
|
case BinaryOpOperation_FLOORDIV:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_FLOOR_DIV_BROADCASTABLE;
|
|
mLayer_->floordivbroadcastable = mCoreMLBackend->create<CoreML__Specification__FloorDivBroadcastableLayerParams>();
|
|
core_ml__specification__floor_div_broadcastable_layer_params__init(mLayer_->floordivbroadcastable);
|
|
break;
|
|
case BinaryOpOperation_EQUAL:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_EQUAL;
|
|
mLayer_->equal = mCoreMLBackend->create<CoreML__Specification__EqualLayerParams>();
|
|
core_ml__specification__equal_layer_params__init(mLayer_->equal);
|
|
if (input) {
|
|
mLayer_->equal->alpha = constVal;
|
|
oneInput = true;
|
|
}
|
|
break;
|
|
case BinaryOpOperation_NOTEQUAL:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_NOT_EQUAL;
|
|
mLayer_->notequal = mCoreMLBackend->create<CoreML__Specification__NotEqualLayerParams>();
|
|
core_ml__specification__not_equal_layer_params__init(mLayer_->notequal);
|
|
if (input) {
|
|
mLayer_->notequal->alpha = constVal;
|
|
oneInput = true;
|
|
}
|
|
break;
|
|
case BinaryOpOperation_MOD:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_MOD_BROADCASTABLE;
|
|
mLayer_->modbroadcastable = mCoreMLBackend->create<CoreML__Specification__ModBroadcastableLayerParams>();
|
|
core_ml__specification__mod_broadcastable_layer_params__init(mLayer_->modbroadcastable);
|
|
break;
|
|
case BinaryOpOperation_ATAN2:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_GREATER_THAN;
|
|
mLayer_->atan = mCoreMLBackend->create<CoreML__Specification__AtanLayerParams>();
|
|
core_ml__specification__atan_layer_params__init(mLayer_->atan);
|
|
break;
|
|
case BinaryOpOperation_LOGICALOR:
|
|
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_LOGICAL_OR;
|
|
mLayer_->logicalor = mCoreMLBackend->create<CoreML__Specification__LogicalOrLayerParams>();
|
|
core_ml__specification__logical_or_layer_params__init(mLayer_->logicalor);
|
|
break;
|
|
default:
|
|
MNN_ERROR("NPU Binary not support %s\n", MNN::EnumNameBinaryOpOperation(binaryType));
|
|
break;
|
|
}
|
|
|
|
std::string binartInputName;
|
|
if(oneInput) {
|
|
binartInputName = mCoreMLBackend->getTensorName(input);
|
|
} else {
|
|
binartInputName = mCoreMLBackend->getTensorName(inputs[0]);
|
|
}
|
|
std::string binaryOutputName = mCoreMLBackend->getTensorName(outputs[0]);
|
|
int activationType = 0;
|
|
if(mOp->type() == OpType_BinaryOp) {
|
|
activationType = mOp->main_as_BinaryOp()->activationType();
|
|
}
|
|
if (activationType == 1) {
|
|
binaryOutputName = binartInputName + "-" + binaryOutputName + "-Relu";
|
|
}
|
|
|
|
if (oneInput) {
|
|
setLayerInputsAndOutputs(mLayer_, {mCoreMLBackend->getTensorName(input)}, {binaryOutputName});
|
|
} else {
|
|
setLayerInputsAndOutputs(mLayer_, {mCoreMLBackend->getTensorName(inputs[0]), mCoreMLBackend->getTensorName(inputs[1])}, {binaryOutputName});
|
|
}
|
|
mCoreMLBackend->addLayer(mLayer_);
|
|
|
|
if (activationType == 1) {
|
|
auto reluLayer = mCoreMLBackend->create<CoreML__Specification__NeuralNetworkLayer>();
|
|
core_ml__specification__neural_network_layer__init(reluLayer);
|
|
mCoreMLBackend->setLayerName(reluLayer, "BinaryRelu");
|
|
reluLayer->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_ACTIVATION;
|
|
reluLayer->activation = mCoreMLBackend->create<CoreML__Specification__ActivationParams>();
|
|
core_ml__specification__activation_params__init(reluLayer->activation);
|
|
reluLayer->activation->nonlinearity_type_case = CORE_ML__SPECIFICATION__ACTIVATION_PARAMS__NONLINEARITY_TYPE_RE_LU;
|
|
reluLayer->activation->relu = mCoreMLBackend->create<CoreML__Specification__ActivationReLU>();
|
|
core_ml__specification__activation_re_lu__init(reluLayer->activation->relu);
|
|
setLayerInputsAndOutputs(reluLayer, {binaryOutputName}, {mCoreMLBackend->getTensorName(outputs[0])});
|
|
mCoreMLBackend->addLayer(reluLayer);
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
|
|
REGISTER_COREML_OP_CREATOR(CoreMLBinary, OpType_BinaryOp)
|
|
REGISTER_COREML_OP_CREATOR(CoreMLBinary, OpType_Eltwise)
|
|
|
|
} // namespace MNN
|