MNN/source/backend/cpu/arm/CommonOptFunctionNeon.cpp

1370 lines
52 KiB
C++

#include "core/Macro.h"
#include "../compute/CommonOptFunction.h"
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#include "./FunctionSummary.hpp"
#include "core/MemoryFormater.h"
extern "C" {
void MNNTranspose32Bit4x4(int32_t* dstO, const int32_t* srcO, int32_t* dim);
void MNNTranspose16Bit8x8(int16_t* dstO, const int16_t* srcO, int32_t* dim);
}
void MNNTranspose32Bit(int32_t* dstO, const int32_t* srcO, int32_t* dim) {
int w = dim[0];
int h = dim[1];
auto wC4 = w / 4;
auto hC4 = h / 4;
int srcStride = dim[2];
int dstStride = dim[3];
if (wC4 > 0 && hC4 > 0) {
MNNTranspose32Bit4x4(dstO, srcO, dim);
}
// Down
for (int i=hC4 * 4; i<h; ++i) {
auto si = srcO + i;
auto di = dstO + i * dstStride;
for (int j=0; j<w; ++j) {
auto sj = si + j * srcStride;
auto dj = di + j;
*dj = *sj;
}
}
// Right
for (int i=0; i<hC4 * 4; ++i) {
auto si = srcO + i;
auto di = dstO + i * dstStride;
for (int j=wC4 * 4; j<w; ++j) {
auto sj = si + j * srcStride;
auto dj = di + j;
*dj = *sj;
}
}
}
void MNNTranspose16Bit(int16_t* dstO, const int16_t* srcO, int32_t* dim) {
int w = dim[0];
int h = dim[1];
auto wC8 = w / 8;
auto hC8 = h / 8;
int srcStride = dim[2];
int dstStride = dim[3];
if (wC8 > 0 && hC8 > 0) {
MNNTranspose16Bit8x8(dstO, srcO, dim);
}
// Down
for (int i = hC8 * 8; i < h; ++i) {
auto si = srcO + i;
auto di = dstO + i * dstStride;
for (int j = 0; j < w; ++j) {
auto sj = si + j * srcStride;
auto dj = di + j;
*dj = *sj;
}
}
// Right
for (int i = 0; i < hC8 * 8; ++i) {
auto si = srcO + i;
auto di = dstO + i * dstStride;
for (int j = wC8 * 8; j < w; ++j) {
auto sj = si + j * srcStride;
auto dj = di + j;
*dj = *sj;
}
}
}
#define EXP_APPROX_MIN_INPUT vdupq_n_f32(-88.0f)
#define EXP_APPROX_MAX_INPUT vdupq_n_f32(88.0f)
#define EXP_APPROX_LN2 vdupq_n_f32(0.69314718056f) // ln(2)
#define EXP_APPROX_LN2_INV vdupq_n_f32(1.44269504089f) // 1/ln(2)
// Fourth-order polynomial approximation coefficients of exp(r):
// P(x) = c4*x^4 + c3*x^3 + c2*x^2 + c1*x + c0
#define EXP_APPROX_C4 vdupq_n_f32(0.0416624f)
#define EXP_APPROX_C3 vdupq_n_f32(0.166665f)
#define EXP_APPROX_C2 vdupq_n_f32(0.500000f)
#define EXP_APPROX_C1 vdupq_n_f32(1.0f)
#define EXP_APPROX_C0 vdupq_n_f32(1.0f)
#ifndef __aarch64__
static inline float32x4_t vrndaq_f32_compat(float32x4_t val) {
const float32x4_t v_zero = vdupq_n_f32(0.0f);
float32x4_t v_truncated = vcvtq_f32_s32(vcvtq_s32_f32(val));
uint32x4_t v_is_positive_frac = vcgtq_f32(val, v_truncated);
uint32x4_t v_is_negative_frac = vcltq_f32(val, v_truncated);
float32x4_t v_offset = vbslq_f32(v_is_positive_frac, vdupq_n_f32(1.0f), v_zero);
v_offset = vbslq_f32(v_is_negative_frac, vdupq_n_f32(-1.0f), v_offset);
return vaddq_f32(v_truncated, v_offset);
}
#endif
static inline float32x4_t expApprox(float32x4_t x) {
x = vminq_f32(vmaxq_f32(x, EXP_APPROX_MIN_INPUT), EXP_APPROX_MAX_INPUT);
float32x4_t k_float;
float32x4_t r;
float32x4_t exp_r;
#if defined(__aarch64__)
// 1. x = k * ln(2) + r
k_float = vrndaq_f32(vmulq_f32(x, EXP_APPROX_LN2_INV));
// r = x - k * ln(2)
r = vfmsq_f32(x, k_float, EXP_APPROX_LN2);
// 2. c0 + r*(c1 + r*(c2 + r*(c3 + r*c4))) (Horner's method)
exp_r = vfmaq_f32(EXP_APPROX_C3, EXP_APPROX_C4, r); // c3 + c4*r
exp_r = vfmaq_f32(EXP_APPROX_C2, exp_r, r); // c2 + r*(...)
exp_r = vfmaq_f32(EXP_APPROX_C1, exp_r, r); // c1 + r*(...)
exp_r = vfmaq_f32(EXP_APPROX_C0, exp_r, r); // c0 + r*(...)
#else
k_float = vrndaq_f32_compat(vmulq_f32(x, EXP_APPROX_LN2_INV));
r = vsubq_f32(x, vmulq_f32(k_float, EXP_APPROX_LN2));
// 2. c0 + r*(c1 + r*(c2 + r*(c3 + r*c4)))
exp_r = vmlaq_f32(EXP_APPROX_C3, EXP_APPROX_C4, r); // c3 + c4*r
exp_r = vmlaq_f32(EXP_APPROX_C2, exp_r, r); // c2 + r*(...)
exp_r = vmlaq_f32(EXP_APPROX_C1, exp_r, r); // c1 + r*(...)
exp_r = vmlaq_f32(EXP_APPROX_C0, exp_r, r); // c0 + r*(...)
#endif
int32x4_t k_int = vcvtq_s32_f32(k_float);
int32x4_t k_shifted = vshlq_n_s32(k_int, 23);
float32x4_t result = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(exp_r), k_shifted));
return result;
}
void MNNExpC8(float* dst, const float* src, float* offset, const float* parameters, size_t countC8) {
float32x4_t maxVec = vdupq_n_f32(offset[2]);
float32x4_t sumVec0 = vdupq_n_f32(0);
float32x4_t sumVec1 = vdupq_n_f32(0);
float32x4_t c0 = vdupq_n_f32(offset[0]);
float32x4_t c1 = vdupq_n_f32(offset[1]);
for (int i = 0; i < countC8; ++i) {
float32x4_t srcVec0 = vld1q_f32(src);
float32x4_t srcVec1 = vld1q_f32(src + 4);
auto subVec0 = vaddq_f32(vmulq_f32(srcVec0, c0), maxVec);
auto subVec1 = vaddq_f32(vmulq_f32(srcVec1, c0), maxVec);
auto expVec0 = vaddq_f32(expApprox(subVec0), c1);
auto expVec1 = vaddq_f32(expApprox(subVec1), c1);
vst1q_f32(dst, expVec0);
vst1q_f32(dst + 4, expVec1);
sumVec0 = vaddq_f32(sumVec0, expVec0);
sumVec1 = vaddq_f32(sumVec1, expVec1);
src += 8;
dst += 8;
}
sumVec0 = vaddq_f32(sumVec0, sumVec1);
float32x2_t sumP = vpadd_f32(vget_low_f32(sumVec0), vget_high_f32(sumVec0));
sumP = vpadd_f32(sumP, sumP);
offset[3] += vget_lane_f32(sumP, 0);
}
void MNNExp(float* destPtr, const float* srcPtr, float* offset, size_t size) {
float32x4_t maxVec = vdupq_n_f32(-offset[2]);
float32x4_t sumVec0 = vdupq_n_f32(0);
float32x4_t sumVec1 = vdupq_n_f32(0);
if (offset[0] == 1.f && offset[1] == 0.f) {
while (size >= 8) {
float32x4_t srcVec0 = vld1q_f32(srcPtr);
float32x4_t srcVec1 = vld1q_f32(srcPtr + 4);
auto subVec0 = vsubq_f32(srcVec0, maxVec);
auto subVec1 = vsubq_f32(srcVec1, maxVec);
auto expVec0 = expApprox(subVec0);
auto expVec1 = expApprox(subVec1);
vst1q_f32(destPtr, expVec0);
vst1q_f32(destPtr + 4, expVec1);
sumVec0 = vaddq_f32(sumVec0, expVec0);
sumVec1 = vaddq_f32(sumVec1, expVec1);
srcPtr += 8;
destPtr += 8;
size -= 8;
}
while (size >= 4) {
float32x4_t srcVec0 = vld1q_f32(srcPtr);
auto subVec0 = vsubq_f32(srcVec0, maxVec);
auto expVec0 = expApprox(subVec0);
sumVec0 = vaddq_f32(sumVec0, expVec0);
vst1q_f32(destPtr, expVec0);
srcPtr += 4;
destPtr += 4;
size -= 4;
}
//merge
sumVec0 = vaddq_f32(sumVec0, sumVec1);
float32x2_t sumP = vpadd_f32(vget_low_f32(sumVec0), vget_high_f32(sumVec0));
sumP = vpadd_f32(sumP, sumP);
auto newSum = vget_lane_f32(sumP, 0);
if (size > 0) {
float tmp[4];
memcpy(tmp, srcPtr, size * sizeof(float));
float32x4_t srcVec0 = vld1q_f32(tmp);
auto subVec0 = vsubq_f32(srcVec0, maxVec);
auto expVec0 = expApprox(subVec0);
vst1q_f32(tmp, expVec0);
for (int i = 0; i < size; ++i) {
newSum += tmp[i];
destPtr[i] = tmp[i];
}
}
offset[3] += newSum;
} else {
float32x4_t c0 = vdupq_n_f32(offset[0]);
float32x4_t c1 = vdupq_n_f32(offset[1]);
while (size >= 8) {
float32x4_t srcVec0 = vld1q_f32(srcPtr);
float32x4_t srcVec1 = vld1q_f32(srcPtr + 4);
auto subVec0 = vsubq_f32(vmulq_f32(srcVec0, c0), maxVec);
auto subVec1 = vsubq_f32(vmulq_f32(srcVec1, c0), maxVec);
auto expVec0 = vaddq_f32(expApprox(subVec0), c1);
auto expVec1 = vaddq_f32(expApprox(subVec1), c1);
vst1q_f32(destPtr, expVec0);
vst1q_f32(destPtr + 4, expVec1);
sumVec0 = vaddq_f32(sumVec0, expVec0);
sumVec1 = vaddq_f32(sumVec1, expVec1);
srcPtr += 8;
destPtr += 8;
size -= 8;
}
while (size >= 4) {
float32x4_t srcVec0 = vld1q_f32(srcPtr);
auto subVec0 = vsubq_f32(vmulq_f32(srcVec0, c0), maxVec);
auto expVec0 = vaddq_f32(expApprox(subVec0), c1);
sumVec0 = vaddq_f32(sumVec0, expVec0);
vst1q_f32(destPtr, expVec0);
srcPtr += 4;
destPtr += 4;
size -= 4;
}
//merge
sumVec0 = vaddq_f32(sumVec0, sumVec1);
float32x2_t sumP = vpadd_f32(vget_low_f32(sumVec0), vget_high_f32(sumVec0));
sumP = vpadd_f32(sumP, sumP);
auto newSum = vget_lane_f32(sumP, 0);
if (size > 0) {
float tmp[4];
memcpy(tmp, srcPtr, size * sizeof(float));
float32x4_t srcVec0 = vld1q_f32(tmp);
auto subVec0 = vsubq_f32(vmulq_f32(srcVec0, c0), maxVec);
auto expVec0 = vaddq_f32(expApprox(subVec0), c1);
vst1q_f32(tmp, expVec0);
for (int i = 0; i < size; ++i) {
newSum += tmp[i];
destPtr[i] = tmp[i];
}
}
offset[3] += newSum;
}
}
static inline void transposeAndStore4x4(const float* srcRowPtrs[4], float* dstColBase, size_t dstColStride) {
float32x4_t row0 = vld1q_f32(srcRowPtrs[0]);
float32x4_t row1 = vld1q_f32(srcRowPtrs[1]);
float32x4_t row2 = vld1q_f32(srcRowPtrs[2]);
float32x4_t row3 = vld1q_f32(srcRowPtrs[3]);
// Step 1: Transpose 2x2 blocks of 2-element vectors
float32x4x2_t t01 = vtrnq_f32(row0, row1);
float32x4x2_t t23 = vtrnq_f32(row2, row3);
// Step 2: Combine the results to get the full transpose
float32x4_t col0 = vcombine_f32(vget_low_f32(t01.val[0]), vget_low_f32(t23.val[0]));
float32x4_t col1 = vcombine_f32(vget_low_f32(t01.val[1]), vget_low_f32(t23.val[1]));
float32x4_t col2 = vcombine_f32(vget_high_f32(t01.val[0]), vget_high_f32(t23.val[0]));
float32x4_t col3 = vcombine_f32(vget_high_f32(t01.val[1]), vget_high_f32(t23.val[1]));
vst1q_f32(dstColBase, col0);
vst1q_f32(dstColBase + dstColStride, col1);
vst1q_f32(dstColBase + 2 * dstColStride, col2);
vst1q_f32(dstColBase + 3 * dstColStride, col3);
}
void packKvCache(float* dst, const float* src, size_t seqLen, size_t kvSeqLen, size_t eP) {
if (seqLen == 0 || kvSeqLen == 0) {
return;
}
// source [seqLen, kvSeqLen]
// dest [seqLen/eP, kvSeqLen, eP]
const int kTileS = 4; // Tiling size for seqLen dimension
const int kTileK = 4; // Tiling size for kvSeqLen dimension
const size_t dstSOuterStride = kvSeqLen * eP;
int s = 0;
for (; s + kTileS <= seqLen; s += kTileS) {
const int sOuter = s / eP;
const int sInner = s % eP;
if (sInner + kTileS > eP) {
break;
}
float* dstSBase = dst + sOuter * dstSOuterStride + sInner;
const float* srcRowPtrs[kTileS];
srcRowPtrs[0] = src + (s + 0) * kvSeqLen;
srcRowPtrs[1] = src + (s + 1) * kvSeqLen;
srcRowPtrs[2] = src + (s + 2) * kvSeqLen;
srcRowPtrs[3] = src + (s + 3) * kvSeqLen;
int k = 0;
for (; k + kTileK <= kvSeqLen; k += kTileK) {
const float* currentSrcPtrs[kTileS];
currentSrcPtrs[0] = srcRowPtrs[0] + k;
currentSrcPtrs[1] = srcRowPtrs[1] + k;
currentSrcPtrs[2] = srcRowPtrs[2] + k;
currentSrcPtrs[3] = srcRowPtrs[3] + k;
float* dstKBase = dstSBase + k * eP;
transposeAndStore4x4(currentSrcPtrs, dstKBase, eP);
}
for (; k < kvSeqLen; ++k) {
float buffer[kTileS] = {
srcRowPtrs[0][k],
srcRowPtrs[1][k],
srcRowPtrs[2][k],
srcRowPtrs[3][k]
};
vst1q_f32(dstSBase + k * eP, vld1q_f32(buffer));
}
}
for (; s < seqLen; ++s) {
const int sOuter = s / eP;
const int sInner = s % eP;
const float* srcRow = src + s * kvSeqLen;
float* dstSBase = dst + sOuter * dstSOuterStride + sInner;
for (int k = 0; k < kvSeqLen; ++k) {
dstSBase[k * eP] = srcRow[k];
}
}
}
void MNNSoftmax(float* softmaxDst, float* input, float* runningMax, float* runningSum, float* updateScale, int outside, int reduceSize) {
for (int k = 0; k < outside; ++k) {
auto source = input + k * reduceSize;
auto dest = softmaxDst + k * reduceSize;
// new max
auto srcPtr = source;
auto size = reduceSize;
float32x4_t maxVec0 = vdupq_n_f32(source[0]);
auto maxVec1 = maxVec0;
float oldMax = source[0];
if (runningMax) {
oldMax = runningMax[k];
}
while (size >= 8) {
float32x4_t srcVec0 = vld1q_f32(srcPtr);
float32x4_t srcVec1 = vld1q_f32(srcPtr + 4);
maxVec0 = vmaxq_f32(maxVec0, srcVec0);
maxVec1 = vmaxq_f32(maxVec1, srcVec1);
srcPtr += 8;
size -= 8;
}
while (size >= 4) {
float32x4_t srcVec0 = vld1q_f32(srcPtr);
maxVec0 = vmaxq_f32(maxVec0, srcVec0);
srcPtr += 4;
size -= 4;
}
maxVec0 = vmaxq_f32(maxVec0, maxVec1);
float32x2_t maxP = vpmax_f32(vget_low_f32(maxVec0), vget_high_f32(maxVec0));
maxP = vpmax_f32(maxP, maxP);
auto newMax = vget_lane_f32(maxP, 0);
while (size > 0) {
newMax = ALIMAX(newMax, srcPtr[0]);
srcPtr += 1;
size -= 1;
}
newMax = ALIMAX(oldMax, newMax);
srcPtr = source;
auto destPtr = dest;
size = reduceSize;
float exprOffset[4] = {
1.0f,
0.0f,
0.0f,
0.0f
};
exprOffset[2] = -newMax;
// expf(xi-newmax) & new sum
MNNExp(destPtr, srcPtr, exprOffset, size);
if (runningMax != nullptr && runningSum != nullptr && updateScale != nullptr) {
// update runningSum, runningMax, scale=expf(oldMax-newMax)
float newSum = exprOffset[3];
runningSum[k] = runningSum[k] * expf(oldMax - newMax) + newSum;
runningMax[k] = newMax;
updateScale[k] = expf(oldMax - newMax);
} else {
// Normalize
float sum = exprOffset[3];
float scale = 1.0f / (sum + 1e-20f);
int count = reduceSize;
auto pDest = dest;
float32x4_t scaleVec = vdupq_n_f32(scale);
while (count >= 4) {
float32x4_t data = vld1q_f32(pDest);
data = vmulq_f32(data, scaleVec);
vst1q_f32(pDest, data);
pDest += 4;
count -= 4;
}
while (count > 0) {
*pDest *= scale;
pDest++;
count--;
}
}
}
}
#ifndef MNN_USE_NEON
void MNNPackedSparseMatMulEpx1(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, unsigned int* NNZMap, int* dataOffsetMap) {
auto eP = parameter[0] / sizeof(float);
MNN_ASSERT((eP & 0x03) == 0); // In sparse calculate, eP should be evenly divided by 4
auto h = parameter[2];
auto l = parameter[1];
auto cStride = parameter[3] / sizeof(float);
auto hRemain = parameter[4];
auto bExtraStride = parameter[5] / sizeof(float);
auto bStride = bExtraStride + l * 4;
auto aStride = eP * l; // sizeof(float);
auto hC4 = UP_DIV(h, 4);
float minValue = -std::numeric_limits<float>().max();
float maxValue = std::numeric_limits<float>().max();
if (nullptr != postParameters) {
minValue = postParameters[2];
maxValue = postParameters[3];
}
const float32x4_t vmin = vld1q_dup_f32(&minValue);
const float32x4_t vmax = vld1q_dup_f32(&maxValue);
// MNN_PRINT("NEON MNNPackedSparseMatMul eP:%lu, eSize:%lu, l:%lu, h:%lu, cStride:%lu, aStride:%lu\n", eP, eSize, l, h, cStride, aStride);
const float* a = A;
size_t ie = 0;
for (ie = 0; ie + eP <= eSize; ie += eP) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
for (auto ih = 0; ih < h; ih++) {
auto ihPack = ih >> 2;
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihPack * cStride + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float32x4_t vacc0123 = vld1q_dup_f32(&initValue);
float32x4_t vacc4567 = vacc0123;
float32x4_t vacc89AB = vacc0123;
float32x4_t vaccCDEF = vacc0123;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x4_t va0123 = vld1q_f32(a);
const float32x4_t va4567 = vld1q_f32(a + 4);
const float32x4_t va89AB = vld1q_f32(a + 8);
const float32x4_t vaCDEF = vld1q_f32(a + 12);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_dup_f32(w);
// MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {16});
// MNN_PRINT("\n");
w++;
a = a + diff;
vacc0123 = vfmaq_f32(vacc0123, va0123, w4);
vacc4567 = vfmaq_f32(vacc4567, va4567, w4);
vacc89AB = vfmaq_f32(vacc89AB, va89AB, w4);
vaccCDEF = vfmaq_f32(vaccCDEF, vaCDEF, w4);
}
vacc0123 = vminq_f32(vacc0123, vmax);
vacc4567 = vminq_f32(vacc4567, vmax);
vacc89AB = vminq_f32(vacc89AB, vmax);
vaccCDEF = vminq_f32(vaccCDEF, vmax);
vacc0123 = vmaxq_f32(vacc0123, vmin);
vacc4567 = vmaxq_f32(vacc4567, vmin);
vacc89AB = vmaxq_f32(vacc89AB, vmin);
vaccCDEF = vmaxq_f32(vaccCDEF, vmin);
// how to store faster: st4 / transpose /
vst1q_lane_f32(c, vacc0123, 0);
vst1q_lane_f32(c + 4, vacc0123, 1);
vst1q_lane_f32(c + 4 * 2, vacc0123, 2);
vst1q_lane_f32(c + 4 * 3, vacc0123, 3);
vst1q_lane_f32(c+ 4 * 4, vacc4567, 0);
vst1q_lane_f32(c + 4 * 5, vacc4567, 1);
vst1q_lane_f32(c + 4 * 6, vacc4567, 2);
vst1q_lane_f32(c + 4 * 7, vacc4567, 3);
vst1q_lane_f32(c + 4 * 8, vacc89AB, 0);
vst1q_lane_f32(c + 4 * 9, vacc89AB, 1);
vst1q_lane_f32(c + 4 * 10, vacc89AB, 2);
vst1q_lane_f32(c + 4 * 11, vacc89AB, 3);
vst1q_lane_f32(c + 4 * 12, vaccCDEF, 0);
vst1q_lane_f32(c + 4 * 13, vaccCDEF, 1);
vst1q_lane_f32(c + 4 * 14, vaccCDEF, 2);
vst1q_lane_f32(c + 4 * 15, vaccCDEF, 3);
}
a += aStride;
}
// const float* blockA = A + ie * l;
if (eSize & 0x08) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
// a = blockA + diff;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
for (auto ih = 0; ih < h; ih++) {
auto ihPack = ih >> 2;
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihPack * cStride + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float32x4_t vacc0123 = vld1q_dup_f32(&initValue);
float32x4_t vacc4567 = vacc0123;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x4_t va0123 = vld1q_f32(a);
const float32x4_t va4567 = vld1q_f32(a + 4);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_dup_f32(w);
// MNN_PRINT("8-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-7]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {8});
// MNN_PRINT("\n");
w++;
a = a + diff;
vacc0123 = vfmaq_f32(vacc0123, va0123, w4);
vacc4567 = vfmaq_f32(vacc4567, va4567, w4);
}
vacc0123 = vminq_f32(vacc0123, vmax);
vacc4567 = vminq_f32(vacc4567, vmax);
vacc0123 = vmaxq_f32(vacc0123, vmin);
vacc4567 = vmaxq_f32(vacc4567, vmin);
// how to store faster: st4 / transpose /
vst1q_lane_f32(c, vacc0123, 0);
vst1q_lane_f32(c + 4, vacc0123, 1);
vst1q_lane_f32(c + 4 * 2, vacc0123, 2);
vst1q_lane_f32(c + 4 * 3, vacc0123, 3);
vst1q_lane_f32(c + 4 * 4, vacc4567, 0);
vst1q_lane_f32(c + 4 * 5, vacc4567, 1);
vst1q_lane_f32(c + 4 * 6, vacc4567, 2);
vst1q_lane_f32(c + 4 * 7, vacc4567, 3);
}
ie += 8;
a += 8;
}
if (eSize & 0x04) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
// const float* a = blockA + diff;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
for (auto ih = 0; ih < h; ih++) {
auto ihPack = ih >> 2;
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihPack * cStride + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float32x4_t vacc0123 = vld1q_dup_f32(&initValue);
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x4_t va0123 = vld1q_f32(a);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_dup_f32(w);
// MNN_PRINT("4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-3]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {4});
// MNN_PRINT("\n");
w++;
a = a + diff;
vacc0123 = vfmaq_f32(vacc0123, va0123, w4);
}
vacc0123 = vminq_f32(vacc0123, vmax);
vacc0123 = vmaxq_f32(vacc0123, vmin);
// how to store faster: st4 / transpose /
vst1q_lane_f32(c, vacc0123, 0);
vst1q_lane_f32(c + 4, vacc0123, 1);
vst1q_lane_f32(c + 4 * 2, vacc0123, 2);
vst1q_lane_f32(c + 4 * 3, vacc0123, 3);
}
ie += 4;
a += 4;
}
if (eSize & 0x02) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
// const float* a = blockA + diff;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
for (auto ih = 0; ih < h; ih++) {
auto ihPack = ih >> 2;
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihPack * cStride + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float32x2_t vacc01 = vld1_dup_f32(&initValue);
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x2_t va01 = vld1_f32(a);
// __builtin_prefetch(a + aStride);
float32x2_t w2 = vld1_dup_f32(w);
// MNN_PRINT("2-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-1]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {2});
// MNN_PRINT("\n");
w++;
a = a + diff;
vacc01 = vfma_f32(vacc01, va01, w2);
}
vacc01 = vmin_f32(vacc01, vget_low_f32(vmax));
vacc01 = vmax_f32(vacc01, vget_low_f32(vmin));
// how to store faster: st4 / transpose /
vst1_lane_f32(c, vacc01, 0);
vst1_lane_f32(c + 4, vacc01, 1);
}
ie += 2;
a += 2;
}
if (eSize & 0x01) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
// const float* a = blockA + diff;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
for (auto ih = 0; ih < h; ih++) {
auto ihPack = ih >> 2;
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihPack * cStride + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float acc0 = initValue;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float a0 = a[0];
const float oneW = *w++;
// MNN_PRINT("1-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0]:", ie, a - A, w - B - 1, c - C, oneW);
// formatMatrix(a, {1});
// MNN_PRINT("\n");
a = a + diff;
acc0 += a0 * oneW;
}
acc0 = std::max(std::min(maxValue, acc0), minValue);
// how to store faster: st4 / transpose /
c[0] = acc0;
}
ie += 1;
// a += 1;
}
return;
}
void MNNPackedSparseMatMulEpx4(float* C, const float* A, const float* B, size_t eSize, const size_t* parameter, const float* postParameters, const float* bias, unsigned int* NNZMap, int* dataOffsetMap) {
auto eP = parameter[0] / sizeof(float);
MNN_ASSERT((eP & 0x03) == 0); // In sparse calculate, eP should be evenly divided by 4
auto h = parameter[2];
auto l = parameter[1];
auto cStride = parameter[3] / sizeof(float);
auto hRemain = parameter[4];
auto bExtraStride = parameter[5] / sizeof(float);
// auto bStride = bExtraStride + l * 4;
auto aStride = eP * l; // sizeof(float);
auto hC4 = UP_DIV(h, 4);
float minValue = -std::numeric_limits<float>().max();
float maxValue = std::numeric_limits<float>().max();
if (nullptr != postParameters) {
minValue = postParameters[2];
maxValue = postParameters[3];
}
const float32x4_t vmin = vld1q_dup_f32(&minValue);
const float32x4_t vmax = vld1q_dup_f32(&maxValue);
const int sparseBlockOC = 4;
// MNN_PRINT("NEON MNNPackedSparseMatMul eP:%lu, eSize:%lu, l:%lu, h:%lu, cStride:%lu, aStride:%lu\n", eP, eSize, l, h, cStride, aStride);
const float* a = A;
size_t ie = 0;
for (ie = 0; ie + eP <= eSize; ie += eP) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
size_t ih = 0;
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
auto ihPack = ih >> 2;
auto c = blockC + ihPack * cStride;
// tobe merged in to weight data
float32x4_t vacc0c4 = nullptr != bias ? vld1q_f32(bias + ih) : vdupq_n_f32(0);
float32x4_t vacc1c4 = vacc0c4;
float32x4_t vacc2c4 = vacc0c4;
float32x4_t vacc3c4 = vacc0c4;
float32x4_t vacc4c4 = vacc0c4;
float32x4_t vacc5c4 = vacc0c4;
float32x4_t vacc6c4 = vacc0c4;
float32x4_t vacc7c4 = vacc0c4;
float32x4_t vacc8c4 = vacc0c4;
float32x4_t vacc9c4 = vacc0c4;
float32x4_t vacc10c4 = vacc0c4;
float32x4_t vacc11c4 = vacc0c4;
float32x4_t vacc12c4 = vacc0c4;
float32x4_t vacc13c4 = vacc0c4;
float32x4_t vacc14c4 = vacc0c4;
float32x4_t vacc15c4 = vacc0c4;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x4_t va0123 = vld1q_f32(a);
const float32x4_t va4567 = vld1q_f32(a + 4);
const float32x4_t va89AB = vld1q_f32(a + 8);
const float32x4_t vaCDEF = vld1q_f32(a + 12);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_f32(w);
// MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {16});
// MNN_PRINT("\n");
w += 4;
a = a + diff;
vacc0c4 = vfmaq_laneq_f32(vacc0c4, w4, va0123, 0);
vacc4c4 = vfmaq_laneq_f32(vacc4c4, w4, va4567, 0);
vacc8c4 = vfmaq_laneq_f32(vacc8c4, w4, va89AB, 0);
vacc12c4 = vfmaq_laneq_f32(vacc12c4, w4, vaCDEF, 0);
vacc1c4 = vfmaq_laneq_f32(vacc1c4, w4, va0123, 1);
vacc5c4 = vfmaq_laneq_f32(vacc5c4, w4, va4567, 1);
vacc9c4 = vfmaq_laneq_f32(vacc9c4, w4, va89AB, 1);
vacc13c4 = vfmaq_laneq_f32(vacc13c4, w4, vaCDEF, 1);
vacc2c4 = vfmaq_laneq_f32(vacc2c4, w4, va0123, 2);
vacc6c4 = vfmaq_laneq_f32(vacc6c4, w4, va4567, 2);
vacc10c4 = vfmaq_laneq_f32(vacc10c4, w4, va89AB, 2);
vacc14c4 = vfmaq_laneq_f32(vacc14c4, w4, vaCDEF, 2);
vacc3c4 = vfmaq_laneq_f32(vacc3c4, w4, va0123, 3);
vacc7c4 = vfmaq_laneq_f32(vacc7c4, w4, va4567, 3);
vacc11c4 = vfmaq_laneq_f32(vacc11c4, w4, va89AB, 3);
vacc15c4 = vfmaq_laneq_f32(vacc15c4, w4, vaCDEF, 3);
}
vacc0c4 = vminq_f32(vacc0c4, vmax);
vacc1c4 = vminq_f32(vacc1c4, vmax);
vacc2c4 = vminq_f32(vacc2c4, vmax);
vacc3c4 = vminq_f32(vacc3c4, vmax);
vacc4c4 = vminq_f32(vacc4c4, vmax);
vacc5c4 = vminq_f32(vacc5c4, vmax);
vacc6c4 = vminq_f32(vacc6c4, vmax);
vacc7c4 = vminq_f32(vacc7c4, vmax);
vacc8c4 = vminq_f32(vacc8c4, vmax);
vacc9c4 = vminq_f32(vacc9c4, vmax);
vacc10c4 = vminq_f32(vacc10c4, vmax);
vacc11c4 = vminq_f32(vacc11c4, vmax);
vacc12c4 = vminq_f32(vacc12c4, vmax);
vacc13c4 = vminq_f32(vacc13c4, vmax);
vacc14c4 = vminq_f32(vacc14c4, vmax);
vacc15c4 = vminq_f32(vacc15c4, vmax);
vacc0c4 = vmaxq_f32(vacc0c4, vmin);
vacc1c4 = vmaxq_f32(vacc1c4, vmin);
vacc2c4 = vmaxq_f32(vacc2c4, vmin);
vacc3c4 = vmaxq_f32(vacc3c4, vmin);
vacc4c4 = vmaxq_f32(vacc4c4, vmin);
vacc5c4 = vmaxq_f32(vacc5c4, vmin);
vacc6c4 = vmaxq_f32(vacc6c4, vmin);
vacc7c4 = vmaxq_f32(vacc7c4, vmin);
vacc8c4 = vmaxq_f32(vacc8c4, vmin);
vacc9c4 = vmaxq_f32(vacc9c4, vmin);
vacc10c4 = vmaxq_f32(vacc10c4, vmin);
vacc11c4 = vmaxq_f32(vacc11c4, vmin);
vacc12c4 = vmaxq_f32(vacc12c4, vmin);
vacc13c4 = vmaxq_f32(vacc13c4, vmin);
vacc14c4 = vmaxq_f32(vacc14c4, vmin);
vacc15c4 = vmaxq_f32(vacc15c4, vmin);
// vacc is continuous along c
vst1q_f32(c, vacc0c4);
vst1q_f32(c + 4 , vacc1c4);
vst1q_f32(c + 4 * 2 , vacc2c4);
vst1q_f32(c + 4 * 3 , vacc3c4);
vst1q_f32(c + 4 * 4 , vacc4c4);
vst1q_f32(c + 4 * 5 , vacc5c4);
vst1q_f32(c + 4 * 6 , vacc6c4);
vst1q_f32(c + 4 * 7 , vacc7c4);
vst1q_f32(c + 4 * 8 , vacc8c4);
vst1q_f32(c + 4 * 9 , vacc9c4);
vst1q_f32(c + 4 * 10 , vacc10c4);
vst1q_f32(c + 4 * 11 , vacc11c4);
vst1q_f32(c + 4 * 12 , vacc12c4);
vst1q_f32(c + 4 * 13 , vacc13c4);
vst1q_f32(c + 4 * 14 , vacc14c4);
vst1q_f32(c + 4 * 15 , vacc15c4);
}
blockC += (h >> 2) * cStride;
for (; ih < h; ih++) {
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float32x4_t vacc0123 = vld1q_dup_f32(&initValue);
float32x4_t vacc4567 = vacc0123;
float32x4_t vacc89AB = vacc0123;
float32x4_t vaccCDEF = vacc0123;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x4_t va0123 = vld1q_f32(a);
const float32x4_t va4567 = vld1q_f32(a + 4);
const float32x4_t va89AB = vld1q_f32(a + 8);
const float32x4_t vaCDEF = vld1q_f32(a + 12);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_dup_f32(w);
// MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {16});
// MNN_PRINT("\n");
w++;
a = a + diff;
vacc0123 = vfmaq_f32(vacc0123, va0123, w4);
vacc4567 = vfmaq_f32(vacc4567, va4567, w4);
vacc89AB = vfmaq_f32(vacc89AB, va89AB, w4);
vaccCDEF = vfmaq_f32(vaccCDEF, vaCDEF, w4);
}
vacc0123 = vminq_f32(vacc0123, vmax);
vacc4567 = vminq_f32(vacc4567, vmax);
vacc89AB = vminq_f32(vacc89AB, vmax);
vaccCDEF = vminq_f32(vaccCDEF, vmax);
vacc0123 = vmaxq_f32(vacc0123, vmin);
vacc4567 = vmaxq_f32(vacc4567, vmin);
vacc89AB = vmaxq_f32(vacc89AB, vmin);
vaccCDEF = vmaxq_f32(vaccCDEF, vmin);
// how to store faster: st4 / transpose /
vst1q_lane_f32(c, vacc0123, 0);
vst1q_lane_f32(c + 4, vacc0123, 1);
vst1q_lane_f32(c + 4 * 2, vacc0123, 2);
vst1q_lane_f32(c + 4 * 3, vacc0123, 3);
vst1q_lane_f32(c+ 4 * 4, vacc4567, 0);
vst1q_lane_f32(c + 4 * 5, vacc4567, 1);
vst1q_lane_f32(c + 4 * 6, vacc4567, 2);
vst1q_lane_f32(c + 4 * 7, vacc4567, 3);
vst1q_lane_f32(c + 4 * 8, vacc89AB, 0);
vst1q_lane_f32(c + 4 * 9, vacc89AB, 1);
vst1q_lane_f32(c + 4 * 10, vacc89AB, 2);
vst1q_lane_f32(c + 4 * 11, vacc89AB, 3);
vst1q_lane_f32(c + 4 * 12, vaccCDEF, 0);
vst1q_lane_f32(c + 4 * 13, vaccCDEF, 1);
vst1q_lane_f32(c + 4 * 14, vaccCDEF, 2);
vst1q_lane_f32(c + 4 * 15, vaccCDEF, 3);
}
a += aStride;
}
// const float* blockA = A + ie * l;
if (eSize & 0x08) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
// a = blockA + diff;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
size_t ih = 0;
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
auto ihPack = ih >> 2;
auto c = blockC + ihPack * cStride;
float32x4_t vacc0c4 = nullptr != bias ? vld1q_f32(bias + ih) : vdupq_n_f32(0.f);
float32x4_t vacc1c4 = vacc0c4;
float32x4_t vacc2c4 = vacc0c4;
float32x4_t vacc3c4 = vacc0c4;
float32x4_t vacc4c4 = vacc0c4;
float32x4_t vacc5c4 = vacc0c4;
float32x4_t vacc6c4 = vacc0c4;
float32x4_t vacc7c4 = vacc0c4;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x4_t va0123 = vld1q_f32(a);
const float32x4_t va4567 = vld1q_f32(a + 4);
const float32x4_t va89AB = vld1q_f32(a + 8);
const float32x4_t vaCDEF = vld1q_f32(a + 12);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_f32(w);
// MNN_PRINT("16-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {16});
// MNN_PRINT("\n");
w += 4;
a = a + diff;
vacc0c4 = vfmaq_laneq_f32(vacc0c4, w4, va0123, 0);
vacc4c4 = vfmaq_laneq_f32(vacc4c4, w4, va4567, 0);
vacc1c4 = vfmaq_laneq_f32(vacc1c4, w4, va0123, 1);
vacc5c4 = vfmaq_laneq_f32(vacc5c4, w4, va4567, 1);
vacc2c4 = vfmaq_laneq_f32(vacc2c4, w4, va0123, 2);
vacc6c4 = vfmaq_laneq_f32(vacc6c4, w4, va4567, 2);
vacc3c4 = vfmaq_laneq_f32(vacc3c4, w4, va0123, 3);
vacc7c4 = vfmaq_laneq_f32(vacc7c4, w4, va4567, 3);
}
vacc0c4 = vminq_f32(vacc0c4, vmax);
vacc1c4 = vminq_f32(vacc1c4, vmax);
vacc2c4 = vminq_f32(vacc2c4, vmax);
vacc3c4 = vminq_f32(vacc3c4, vmax);
vacc4c4 = vminq_f32(vacc4c4, vmax);
vacc5c4 = vminq_f32(vacc5c4, vmax);
vacc6c4 = vminq_f32(vacc6c4, vmax);
vacc7c4 = vminq_f32(vacc7c4, vmax);
vacc0c4 = vmaxq_f32(vacc0c4, vmin);
vacc1c4 = vmaxq_f32(vacc1c4, vmin);
vacc2c4 = vmaxq_f32(vacc2c4, vmin);
vacc3c4 = vmaxq_f32(vacc3c4, vmin);
vacc4c4 = vmaxq_f32(vacc4c4, vmin);
vacc5c4 = vmaxq_f32(vacc5c4, vmin);
vacc6c4 = vmaxq_f32(vacc6c4, vmin);
vacc7c4 = vmaxq_f32(vacc7c4, vmin);
// vacc is continuous along c
vst1q_f32(c, vacc0c4);
vst1q_f32(c + 4 , vacc1c4);
vst1q_f32(c + 4 * 2 , vacc2c4);
vst1q_f32(c + 4 * 3 , vacc3c4);
vst1q_f32(c + 4 * 4 , vacc4c4);
vst1q_f32(c + 4 * 5 , vacc5c4);
vst1q_f32(c + 4 * 6 , vacc6c4);
vst1q_f32(c + 4 * 7 , vacc7c4);
}
blockC += (h >> 2) * cStride;
for (; ih < h; ih++) {
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float32x4_t vacc0123 = vld1q_dup_f32(&initValue);
float32x4_t vacc4567 = vacc0123;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x4_t va0123 = vld1q_f32(a);
const float32x4_t va4567 = vld1q_f32(a + 4);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_dup_f32(w);
// MNN_PRINT("8-4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-7]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {8});
// MNN_PRINT("\n");
w++;
a = a + diff;
vacc0123 = vfmaq_f32(vacc0123, va0123, w4);
vacc4567 = vfmaq_f32(vacc4567, va4567, w4);
}
vacc0123 = vminq_f32(vacc0123, vmax);
vacc4567 = vminq_f32(vacc4567, vmax);
vacc0123 = vmaxq_f32(vacc0123, vmin);
vacc4567 = vmaxq_f32(vacc4567, vmin);
// how to store faster: st4 / transpose /
vst1q_lane_f32(c, vacc0123, 0);
vst1q_lane_f32(c + 4, vacc0123, 1);
vst1q_lane_f32(c + 4 * 2, vacc0123, 2);
vst1q_lane_f32(c + 4 * 3, vacc0123, 3);
vst1q_lane_f32(c + 4 * 4, vacc4567, 0);
vst1q_lane_f32(c + 4 * 5, vacc4567, 1);
vst1q_lane_f32(c + 4 * 6, vacc4567, 2);
vst1q_lane_f32(c + 4 * 7, vacc4567, 3);
}
ie += 8;
a += 8;
}
if (eSize & 0x04) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
// const float* a = blockA + diff;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
size_t ih = 0;
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
auto ihPack = ih >> 2;
auto c = blockC + ihPack * cStride;
float32x4_t vacc0c4 = nullptr != bias ? vld1q_f32(bias + ih) : vdupq_n_f32(0);
float32x4_t vacc1c4 = vacc0c4;
float32x4_t vacc2c4 = vacc0c4;
float32x4_t vacc3c4 = vacc0c4;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x4_t va0123 = vld1q_f32(a);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_f32(w);
// MNN_PRINT("4-4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {16});
// MNN_PRINT("\n");
w += 4;
a = a + diff;
vacc0c4 = vfmaq_laneq_f32(vacc0c4, w4, va0123, 0);
vacc1c4 = vfmaq_laneq_f32(vacc1c4, w4, va0123, 1);
vacc2c4 = vfmaq_laneq_f32(vacc2c4, w4, va0123, 2);
vacc3c4 = vfmaq_laneq_f32(vacc3c4, w4, va0123, 3);
}
vacc0c4 = vminq_f32(vacc0c4, vmax);
vacc1c4 = vminq_f32(vacc1c4, vmax);
vacc2c4 = vminq_f32(vacc2c4, vmax);
vacc3c4 = vminq_f32(vacc3c4, vmax);
vacc0c4 = vmaxq_f32(vacc0c4, vmin);
vacc1c4 = vmaxq_f32(vacc1c4, vmin);
vacc2c4 = vmaxq_f32(vacc2c4, vmin);
vacc3c4 = vmaxq_f32(vacc3c4, vmin);
// vacc is continuous along c
vst1q_f32(c, vacc0c4);
vst1q_f32(c + 4 , vacc1c4);
vst1q_f32(c + 4 * 2 , vacc2c4);
vst1q_f32(c + 4 * 3 , vacc3c4);
}
blockC += (h >> 2) * cStride;
for (; ih < h; ih++) {
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float32x4_t vacc0123 = vld1q_dup_f32(&initValue);
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x4_t va0123 = vld1q_f32(a);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_dup_f32(w);
// MNN_PRINT("4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-3]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {4});
// MNN_PRINT("\n");
w++;
a = a + diff;
vacc0123 = vfmaq_f32(vacc0123, va0123, w4);
}
vacc0123 = vminq_f32(vacc0123, vmax);
vacc0123 = vmaxq_f32(vacc0123, vmin);
// how to store faster: st4 / transpose /
vst1q_lane_f32(c, vacc0123, 0);
vst1q_lane_f32(c + 4, vacc0123, 1);
vst1q_lane_f32(c + 4 * 2, vacc0123, 2);
vst1q_lane_f32(c + 4 * 3, vacc0123, 3);
}
ie += 4;
a += 4;
}
if (eSize & 0x02) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
// const float* a = blockA + diff;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
size_t ih = 0;
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
auto ihPack = ih >> 2;
auto c = blockC + ihPack * cStride;
float32x4_t vacc0c4 = nullptr != bias ? vld1q_f32(bias + ih) : vdupq_n_f32(0.f);
float32x4_t vacc1c4 = vacc0c4;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x2_t va01 = vld1_f32(a);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_f32(w);
// MNN_PRINT("2-4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {16});
// MNN_PRINT("\n");
w += 4;
a = a + diff;
vacc0c4 = vfmaq_lane_f32(vacc0c4, w4, va01, 0);
vacc1c4 = vfmaq_lane_f32(vacc1c4, w4, va01, 1);
}
vacc0c4 = vminq_f32(vacc0c4, vmax);
vacc1c4 = vminq_f32(vacc1c4, vmax);
vacc0c4 = vmaxq_f32(vacc0c4, vmin);
vacc1c4 = vmaxq_f32(vacc1c4, vmin);
// vacc is continuous along c
vst1q_f32(c, vacc0c4);
vst1q_f32(c + 4, vacc1c4);
}
blockC += (h >> 2) * cStride;
for (; ih < h; ih++) {
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float32x2_t vacc01 = vld1_dup_f32(&initValue);
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x2_t va01 = vld1_f32(a);
// __builtin_prefetch(a + aStride);
float32x2_t w2 = vld1_dup_f32(w);
// MNN_PRINT("2-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-1]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {2});
// MNN_PRINT("\n");
w++;
a = a + diff;
vacc01 = vfma_f32(vacc01, va01, w2);
}
vacc01 = vmin_f32(vacc01, vget_low_f32(vmax));
vacc01 = vmax_f32(vacc01, vget_low_f32(vmin));
// how to store faster: st4 / transpose /
vst1_lane_f32(c, vacc01, 0);
vst1_lane_f32(c + 4, vacc01, 1);
}
ie += 2;
a += 2;
}
if (eSize & 0x01) {
const int* dataOffset = dataOffsetMap;
const int diff = *dataOffset++;
// const float* a = blockA + diff;
a += diff;
const float* w = B;
float* blockC = C + (ie << 2);
const unsigned int* nnz = NNZMap;
size_t ih = 0;
for (; ih < (h & (~0x03)); ih += sparseBlockOC) {
auto ihPack = ih >> 2;
auto c = blockC + ihPack * cStride;
float32x4_t vacc0c4 = nullptr != bias ? vld1q_f32(bias + ih) : vdupq_n_f32(0);
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float32x2_t va01 = vld1_f32(a);
// __builtin_prefetch(a + aStride);
float32x4_t w4 = vld1q_f32(w);
// MNN_PRINT("1-4-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0-15]:", ie, a - A, w - B, c - C, *w);
// formatMatrix(a, {16});
// MNN_PRINT("\n");
w += 4;
a = a + diff;
vacc0c4 = vfmaq_lane_f32(vacc0c4, w4, va01, 0);
}
vacc0c4 = vminq_f32(vacc0c4, vmax);
vacc0c4 = vmaxq_f32(vacc0c4, vmin);
// vacc is continuous along c
vst1q_f32(c, vacc0c4);
}
blockC += (h >> 2) * cStride;
for (; ih < h; ih++) {
auto ihSubIndex = ih & 0x03;
auto c = blockC + ihSubIndex;
const float initValue = nullptr != bias ? bias[ih] : 0;
float acc0 = initValue;
const unsigned int lElement = *nnz++;
for (auto il = 0; il < lElement; il++) {
const int diff = *dataOffset++;
const float a0 = a[0];
const float oneW = *w++;
// MNN_PRINT("1-loop: ie:%zu, a offset:%ld, w offset:%ld, c offset:%ld, w value:%f, a value[0]:", ie, a - A, w - B - 1, c - C, oneW);
// formatMatrix(a, {1});
// MNN_PRINT("\n");
a = a + diff;
acc0 += a0 * oneW;
}
acc0 = std::max(std::min(maxValue, acc0), minValue);
// how to store faster: st4 / transpose /
c[0] = acc0;
}
ie += 1;
// a += 1;
}
return;
}
#endif
void MNNGetSparseMatMulPackMode(int* eP, int *lP, int* hP) {
#ifdef __aarch64__
*eP = 16;
#else
*eP = 8; // total vector number is 16, we choose to use 8 for output.
#endif
*lP = 1;
*hP = 4;
// hp is corresponding to sparse block along right matrix colum dimension. in ramdom sparse, it is 1.
return;
}
void MNNGetMatMulPackMode(int* eP, int *lP, int* hP) {
*eP = 12;
*lP = 1;
#ifdef __aarch64__
*hP = 8;
#else
*hP = 4;
#endif
}
#ifdef __aarch64__
// input shape is (l, h) when transpose=false, else input shape is (h, l)
// output shape is (UP_DIV(h, 8), l, 8)
void MNNPackForMatMul_B(float* dest, const float* source, size_t h, size_t kernelsize, size_t ic, bool transpose) {
auto hP = (int)h / 8;
auto hR = (int)hP * 8;
auto l = kernelsize * ic;
if (hR != h) {
::memset(dest, 0, UP_DIV(h, 8)*8*l*sizeof(float));
}
if (!transpose) {
for (int y=0; y<hP; ++y) {
auto destY = dest + y * 8 * l;
auto sourceY = source + y * 8;
for (int x=0; x<l; ++x) {
::memcpy(destY + 8 * x, sourceY + x * h, 8 * sizeof(float));
}
}
auto hRemain = h - hR;
if (hRemain > 0) {
auto destY = dest + hP * 8 * l;
auto sourceY = source + hP * 8;
for (int x=0; x<l; ++x) {
::memcpy(destY + 8 * x, sourceY + x * h, hRemain * sizeof(float));
}
}
return;
}
int lC8 = (int)l / 8;
auto lR = lC8 * 8;
if (hP > 0 && lC8 > 0) {
MNNPackC8(dest, source, l, h);
}
for (int y=hR; y<h; ++y) {
auto yR = y % 8;
auto yC = hP;
for (int x=0; x<l; ++x) {
dest[x * 8 + yR + yC * 8 * l] = source[x + y * l];
}
}
for (int y=0; y<hR; ++y) {
auto yR = y % 8;
auto yC = y / 8;
for (int x=lR; x<l; ++x) {
dest[x * 8 + yR + yC * 8 * l] = source[x + y * l];
}
}
}
#else
void MNNPackForMatMul_B(float* dest, const float* source, size_t h, size_t kernelsize, size_t ic, bool transpose) {
auto l = kernelsize * ic;
if (!transpose) {
auto hP = h / 4;
auto hR = hP * 4;
if (hR != h) {
::memset(dest, 0, UP_DIV(h, 4)*4*l*sizeof(float));
}
for (int y=0; y<hP; ++y) {
auto destY = dest + y * 4 * l;
auto sourceY = source + y * 4;
for (int x=0; x<l; ++x) {
::memcpy(destY + 4 * x, sourceY + x * h, 4 * sizeof(float));
}
}
auto hRemain = h - hR;
if (hRemain > 0) {
auto destY = dest + hP * 4 * l;
auto sourceY = source + hP * 4;
for (int x=0; x<l; ++x) {
::memcpy(destY + 4 * x, sourceY + x * h, hRemain * sizeof(float));
}
}
return;
}
int offset[] = {
(int)l, (int)l
};
MNNPackC4(dest, source, l, h, offset);
}
#endif
#endif