MNN/source/backend/opencl/core/BufferConvertor.cpp

675 lines
32 KiB
C++

//
// BufferConvertor.cpp
// MNN
//
// Created by MNN on 2020/09/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/core/BufferConvertor.hpp"
namespace MNN {
namespace OpenCL {
static void AddBuildOptionOfDataType(const Tensor *input, const Tensor *output, std::set<std::string> &buildOptions, int input_precision, int output_precision, bool toDevice, bool toHost){
if(input->getType().code == halide_type_int) {
if(input->getType().bits == 8){
buildOptions.emplace("-DINPUT_TYPE=char");
buildOptions.emplace("-DINPUT_TYPE4=char4");
buildOptions.emplace("-DINPUT_TYPE16=char16");
} else if(input->getType().bits == 32){
buildOptions.emplace("-DINPUT_TYPE=int");
buildOptions.emplace("-DINPUT_TYPE4=int4");
buildOptions.emplace("-DINPUT_TYPE16=int16");
} else {
MNN_PRINT("opencl input datatype not support, bit:%d\n", input->getType().bits);
MNN_ASSERT(false);
}
} else if(input->getType().code == halide_type_uint){
if(input->getType().bits == 8){
buildOptions.emplace("-DINPUT_TYPE=uchar");
buildOptions.emplace("-DINPUT_TYPE4=uchar4");
buildOptions.emplace("-DINPUT_TYPE16=uchar16");
} else if(input->getType().bits == 32){
buildOptions.emplace("-DINPUT_TYPE=uint");
buildOptions.emplace("-DINPUT_TYPE4=uint4");
buildOptions.emplace("-DINPUT_TYPE16=uint16");
} else {
MNN_PRINT("opencl input datatype not support, bit:%d\n", input->getType().bits);
MNN_ASSERT(false);
}
} else {
if(input_precision != BackendConfig::Precision_High && toHost){
buildOptions.emplace("-DINPUT_TYPE=half");
buildOptions.emplace("-DINPUT_TYPE4=half4");
buildOptions.emplace("-DINPUT_TYPE16=half16");
}else{
buildOptions.emplace("-DINPUT_TYPE=float");
buildOptions.emplace("-DINPUT_TYPE4=float4");
buildOptions.emplace("-DINPUT_TYPE16=float16");
}
}
if(output->getType().code == halide_type_int) {
if(output->getType().bits == 8){
buildOptions.emplace("-DOUTPUT_TYPE=char");
buildOptions.emplace("-DOUTPUT_TYPE4=char4");
buildOptions.emplace("-DOUTPUT_TYPE16=char16");
buildOptions.emplace("-DCONVERT_OUTPUT4=convert_char4");
buildOptions.emplace("-DCONVERT_OUTPUT16=convert_char16");
} else if(output->getType().bits == 32){
buildOptions.emplace("-DOUTPUT_TYPE=int");
buildOptions.emplace("-DOUTPUT_TYPE4=int4");
buildOptions.emplace("-DOUTPUT_TYPE16=int16");
buildOptions.emplace("-DCONVERT_OUTPUT4=convert_int4");
buildOptions.emplace("-DCONVERT_OUTPUT16=convert_int16");
} else {
MNN_PRINT("opencl input datatype not support, bit:%d\n", output->getType().bits);
MNN_ASSERT(false);
}
} else if(output->getType().code == halide_type_uint){
if(output->getType().bits == 8){
buildOptions.emplace("-DOUTPUT_TYPE=uchar");
buildOptions.emplace("-DOUTPUT_TYPE4=uchar4");
buildOptions.emplace("-DOUTPUT_TYPE16=uchar16");
buildOptions.emplace("-DCONVERT_OUTPUT4=convert_uchar4");
buildOptions.emplace("-DCONVERT_OUTPUT16=convert_uchar16");
} else if(output->getType().bits == 32){
buildOptions.emplace("-DOUTPUT_TYPE=uint");
buildOptions.emplace("-DOUTPUT_TYPE4=uint4");
buildOptions.emplace("-DOUTPUT_TYPE16=uint16");
buildOptions.emplace("-DCONVERT_OUTPUT4=convert_uint4");
buildOptions.emplace("-DCONVERT_OUTPUT16=convert_uint16");
} else {
MNN_PRINT("opencl input datatype not support, bit:%d\n", output->getType().bits);
MNN_ASSERT(false);
}
} else {
if(output_precision != BackendConfig::Precision_High && toDevice){
buildOptions.emplace("-DOUTPUT_TYPE=half");
buildOptions.emplace("-DOUTPUT_TYPE4=half4");
buildOptions.emplace("-DOUTPUT_TYPE16=half16");
buildOptions.emplace("-DCONVERT_OUTPUT4=convert_half4");
buildOptions.emplace("-DCONVERT_OUTPUT16=convert_half16");
}else{
buildOptions.emplace("-DOUTPUT_TYPE=float");
buildOptions.emplace("-DOUTPUT_TYPE4=float4");
buildOptions.emplace("-DOUTPUT_TYPE16=float16");
buildOptions.emplace("-DCONVERT_OUTPUT4=convert_float4");
buildOptions.emplace("-DCONVERT_OUTPUT16=convert_float16");
}
}
}
bool converNCHWOrNHWCBufferToNC4HW4OrNC16HW16Buffer(const Tensor *input, Tensor *output, const std::string Name, OpenCLRuntime *runtime, int precision, bool needTrans, bool needWait, bool svmFlag) {
std::vector<int> outputShape = tensorShapeFormat(input);
std::string kernelName = Name;
std::string sourceName = "buffer_convert_buf";
uint32_t cPack = 4;
auto inputpad = TensorUtils::getDescribe(input)->mPads;
auto outputpad = TensorUtils::getDescribe(output)->mPads;
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
cPack = TensorUtils::getTensorChannelPack(output);
if(cPack == 16)
{
sourceName = "buffer_convert_subgroup_buf";
}
#endif
uint32_t outputGlobalWorkSize[2] = {static_cast<uint32_t>(UP_DIV(outputShape[3], cPack) * outputShape[2]),
static_cast<uint32_t>(outputShape[0] * outputShape[1])};
std::set<std::string> buildOptions;
AddBuildOptionOfDataType(input, output, buildOptions, precision, precision, true, false);
auto convertBufferKernelW = runtime->buildKernelWithCache(sourceName, kernelName, buildOptions, precision);
auto convertBufferKernel = convertBufferKernelW->get();
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= convertBufferKernel.setArg(idx++, outputGlobalWorkSize[0]);
ret |= convertBufferKernel.setArg(idx++, outputGlobalWorkSize[1]);
#ifdef MNN_OPENCL_SVM_ENABLE
if(svmFlag == true) {
ret |= clSetKernelArgSVMPointer(convertBufferKernel.get(), idx++, (const void *)input->deviceId());
}
else
#endif
{
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(input));
}
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputShape[1]));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputShape[2]));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputShape[3]));
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(output));
if(cPack == 16)
{
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputpad.left));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputpad.right));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputpad.left));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputpad.right));
}
MNN_CHECK_CL_SUCCESS(ret, "setArg converNCHWOrNHWCBufferToNC4HW4OrNC16HW16Buffer");
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernelW));
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
cl::Event event;
cl_int res;
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
for (size_t i = 0; i < lws.size(); ++i) {
roundUpGroupWorkSize[i] = ROUND_UP(outputGlobalWorkSize[i], lws[i]);
}
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
cl::NDRange(lws[0], lws[1]), nullptr, &event);
MNN_CHECK_CL_SUCCESS(res, kernelName.c_str());
if (true == needWait) {
event.wait();
}
return true;
}
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
bool convertNC4HW4BufferBetweenNC16HW16Buffer(const Tensor *input, Tensor *output, const std::string Name,
OpenCLRuntime *runtime, int precision, TransType formatTrans, bool needWait, bool svmFlag,
bool srcswap, bool dstswap) {
std::vector<int> outputShape = tensorShapeFormat(input);
uint32_t outputGlobalWorkSize[2] = {static_cast<uint32_t>(UP_DIV(outputShape[3], 16) * outputShape[2]),
static_cast<uint32_t>(outputShape[0] * outputShape[1])};
std::string kernelName = Name;
auto inputpad = TensorUtils::getDescribe(input)->mPads;
auto outputpad = TensorUtils::getDescribe(output)->mPads;
std::set<std::string> buildOptions;
switch (formatTrans) {
case InpTrans:
AddBuildOptionOfDataType(input, output, buildOptions, precision, precision, true, false);
break;
case OutTrans:
AddBuildOptionOfDataType(input, output, buildOptions, precision, precision, false, true);
break;
default:
AddBuildOptionOfDataType(input, output, buildOptions, precision, precision, true, true);
break;
}
auto convertBufferKernelW = runtime->buildKernelWithCache("buffer_convert_subgroup_buf", kernelName, buildOptions, precision);
auto convertBufferKernel = convertBufferKernelW->get();
uint32_t idx = 0;
int outputImageShape[2] = {input->height(), input->width()};
int inchannelPack = UP_DIV(input->channel(), TensorUtils::getTensorChannelPack(input));
int outchannelPack = UP_DIV(output->channel(), TensorUtils::getTensorChannelPack(output));
int batch = input->batch();
int srcStride[2] = {inchannelPack, 1};
int dstStride[2] = {outchannelPack, 1};
if (srcswap) {
srcStride[0] = 1;
srcStride[1] = batch;
}
if (dstswap) {
dstStride[0] = 1;
dstStride[1] = batch;
}
cl_int ret = CL_SUCCESS;
ret |= convertBufferKernel.setArg(idx++, outputGlobalWorkSize[0]);
ret |= convertBufferKernel.setArg(idx++, outputGlobalWorkSize[1]);
#ifdef MNN_OPENCL_SVM_ENABLE
if (svmFlag == true) {
ret |= clSetKernelArgSVMPointer(convertBufferKernel.get(), idx++, (const void *)input->buffer().device);
} else
#endif
{
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(input));
}
ret |= convertBufferKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= convertBufferKernel.setArg(idx++, sizeof(srcStride), srcStride);
ret |= convertBufferKernel.setArg(idx++, sizeof(dstStride), dstStride);
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(output));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputpad.left));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputpad.right));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputpad.left));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputpad.right));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outchannelPack));
MNN_CHECK_CL_SUCCESS(ret, "setArg convertNC4HW4BufferBetweenNC16HW16Buffer");
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernelW));
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
cl::Event event;
cl_int res;
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
for (size_t i = 0; i < lws.size(); ++i) {
roundUpGroupWorkSize[i] = ROUND_UP(outputGlobalWorkSize[i], lws[i]);
}
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
cl::NDRange(lws[0], lws[1]), nullptr, &event);
MNN_CHECK_CL_SUCCESS(res, Name.c_str());
if (true == needWait) {
event.wait();
}
return true;
}
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
bool convertNC4HW4OrNC16HW16BufferToNCHWOrNHWCBuffer(const Tensor *input, Tensor *output, const std::string Name, OpenCLRuntime *runtime, int precision, bool needOutTrans, bool needWait, bool svmFlag) {
std::vector<int> inputShape = tensorShapeFormat(input);
std::string kernelName = Name;
std::string sourceName = "buffer_convert_buf";
uint32_t cPack = 4;
auto inputpad = TensorUtils::getDescribe(input)->mPads;
auto outputpad = TensorUtils::getDescribe(output)->mPads;
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
cPack = TensorUtils::getTensorChannelPack(input);
if(cPack == 16)
{
sourceName = "buffer_convert_subgroup_buf";
}
#endif
uint32_t in_gws[2] = {static_cast<uint32_t>(UP_DIV(inputShape[3], cPack) * inputShape[2]),
static_cast<uint32_t>(inputShape[0] * inputShape[1])};
std::set<std::string> buildOptions;
AddBuildOptionOfDataType(input, output, buildOptions, precision, precision, false, true);
auto convertBufferKernelW = runtime->buildKernelWithCache(sourceName, kernelName, buildOptions, precision);
auto convertBufferKernel = convertBufferKernelW->get();
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= convertBufferKernel.setArg(idx++, in_gws[0]);
ret |= convertBufferKernel.setArg(idx++, in_gws[1]);
#ifdef MNN_OPENCL_SVM_ENABLE
if(svmFlag == true)
{
ret |= clSetKernelArgSVMPointer(convertBufferKernel.get(), idx++, (const void *)output->deviceId());
}
else
#endif
{
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(output));
}
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputShape[1]));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputShape[2]));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputShape[3]));
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(input));
if(cPack == 16)
{
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputpad.left));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputpad.right));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputpad.left));
ret |= convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputpad.right));
}
MNN_CHECK_CL_SUCCESS(ret, "setArg convertNC4HW4OrNC16HW16BufferToNCHWOrNHWCBuffer");
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernelW));
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
cl::Event event;
cl_int res;
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
for (size_t i = 0; i < lws.size(); ++i) {
roundUpGroupWorkSize[i] = ROUND_UP(in_gws[i], lws[i]);
}
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
cl::NDRange(lws[0], lws[1]), nullptr, &event);
MNN_CHECK_CL_SUCCESS(res, kernelName.c_str());
if (true == needWait) {
event.wait();
}
return true;
}
bool BufferConvertor::convertToNC4HW4Buffer(const Tensor *buffer, const OpenCLBufferFormat type, Tensor *image, int precision, bool needTrans, bool needWait, bool lowMemory, int quantBit) {
#ifdef LOG_VERBOSE
MNN_PRINT("start convertBufferToNC4HW4Buffer !\n");
#endif
auto formattedBufferShape = tensorShapeFormat(buffer);//NHWC
std::vector<size_t> imageShape;
getImageShape(formattedBufferShape, type, &imageShape);
uint32_t gws[2] = {static_cast<uint32_t>(imageShape[0]), static_cast<uint32_t>(imageShape[1])};
auto runtime = mOpenCLRuntime;
std::string kernelName;
std::string kernelFile = "buffer_convert_buf";
switch (type) {
case CONV2D_FILTER:
#ifdef MNN_LOW_MEMORY
if (lowMemory) {
if (quantBit != 8 && quantBit != 4) {
MNN_ERROR("For Opencl Backend, only support low memory mode of int8 or int4 dequantization currently.\n");
MNN_ASSERT(false);
}
kernelFile = "buffer_convert_quant";
// shared part for all cases
if (quantBit == 8) {
kernelName = "conv2d_filter_buffer_to_nc4hw4_buffer_int8"; //NC4HW4 (1, 4*ic/4, kw*kh*oc/4, 1)*4
} else if (quantBit == 4){
kernelName = "conv2d_filter_buffer_to_nc4hw4_buffer_int4"; //NC4HW4 (1, 4*ic/4, kw*kh*oc/4, 1)*4
} else {/* More types to be supported. */}
} else
#endif
{
kernelName = "conv2d_filter_buffer_to_nc4hw4_buffer";//NC4HW4 (1, 4*ic/4, kw*kh*oc/4, 1)*4
}
break;
case DW_CONV2D_FILTER:
kernelName = "dw_filter_buffer_to_nc4hw4_buffer";//NC4HW4 (1, kw*kh, oc/4, 1)*4
case NHWC_BUFFER:
case NCHW_BUFFER:
case ARGUMENT:
break;
default:
break;
}
std::set<std::string> buildOptions;
if(needTrans) {
//buildOptions.emplace("-DBUFFER_FORMAT_INP_TRANS");
kernelName += "_floatin";
}
#ifdef MNN_LOW_MEMORY
if (lowMemory) {
if (quantBit == 8) {
// int8 case
buildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT8");
} else if (quantBit == 4){
// int4 case
buildOptions.emplace("-DUSE_LOW_BIT_WEIGHT_INT4");
} else {/* More types to be supported. */}
}
#endif
mBufferToImageKernel = runtime->buildKernelWithCache(kernelFile, kernelName, buildOptions, precision, buffer, image);
auto kernel = mBufferToImageKernel->get();
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= kernel.setArg(idx++, gws[0]);
ret |= kernel.setArg(idx++, gws[1]);
ret |= kernel.setArg(idx++, openCLBuffer(buffer));
if (type == CONV2D_FILTER) {
const int channelHeightWidthSumSize =
buffer->buffer().dim[1].extent * buffer->buffer().dim[2].extent * buffer->buffer().dim[3].extent;
const int heightWidthSumSize = buffer->buffer().dim[2].extent * buffer->buffer().dim[3].extent;
int kernelShape[2] = {buffer->buffer().dim[2].extent, buffer->buffer().dim[3].extent};
ret |= kernel.setArg(idx++, static_cast<uint32_t>(buffer->buffer().dim[0].extent));
ret |= kernel.setArg(idx++, sizeof(kernelShape),kernelShape);
ret |= kernel.setArg(idx++, static_cast<uint32_t>(channelHeightWidthSumSize));
ret |= kernel.setArg(idx++, static_cast<uint32_t>(heightWidthSumSize));
} else if (type == DW_CONV2D_FILTER) {
const int heightWidthSumSize = buffer->buffer().dim[2].extent * buffer->buffer().dim[3].extent;
int kernelShape[4] = {buffer->buffer().dim[0].extent, buffer->buffer().dim[1].extent, buffer->buffer().dim[2].extent, buffer->buffer().dim[3].extent};
ret |= kernel.setArg(idx++, sizeof(kernelShape),kernelShape);
ret |= kernel.setArg(idx++, static_cast<uint32_t>(heightWidthSumSize));
} else {
MNN_PRINT("convertToNC4HW4Buffer type not support!\n");
return false;
}
ret |= kernel.setArg(idx++, openCLBuffer(image));
MNN_CHECK_CL_SUCCESS(ret, "setArg convertToNC4HW4Buffer");
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mBufferToImageKernel));
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
cl::Event event;
cl_int res;
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
for (size_t i = 0; i < lws.size(); ++i) {
roundUpGroupWorkSize[i] = ROUND_UP(gws[i], lws[i]);
}
res = runtime->commandQueue().enqueueNDRangeKernel(kernel, cl::NullRange,
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
cl::NDRange(lws[0], lws[1]), nullptr, &event);
MNN_CHECK_CL_SUCCESS(res, "convertToNC4HW4Buffer");
if (needWait) {
event.wait();
}
#ifdef LOG_VERBOSE
MNN_PRINT("end convertBufferToNC4HW4Buffer !\n");
#endif
return true;
}
bool convertBufferToBuffer(Tensor *input, Tensor *output, OpenCLRuntime *runtime, int input_precision, int output_precision, int backend_precison, bool toDevice, bool toHost, bool needWait, bool svmFlag) {
std::vector<int> outputShape = tensorShapeFormat(input);
int shape[4] = {outputShape[0], outputShape[3], outputShape[1], outputShape[2]};//N C H W
auto srcDimensionFormat = TensorUtils::getDescribe(input)->dimensionFormat;
auto dstDimensionFormat = TensorUtils::getDescribe(output)->dimensionFormat;
if (MNN_DATA_FORMAT_NC4HW4 == dstDimensionFormat && srcDimensionFormat != dstDimensionFormat && (outputShape[3] % 4) != 0){
int region[] = {outputShape[0], ROUND_UP(outputShape[3], 4), outputShape[1], outputShape[2]};//nchw
auto kernelW = runtime->buildKernelWithCache("raster_buf", "buffer_set_zero", {}, backend_precison, output, output);
auto kernel = kernelW->get();
uint32_t lws[2] = {8, 8};
uint32_t gws[2] = {(uint32_t)UP_DIV((region[2] * region[3]), 8)*8, (uint32_t)UP_DIV((region[0] * region[1]), 8)*8};
int global_dim0 = region[2] * region[3];
int global_dim1 = region[0] * region[1];
uint32_t idx = 0;
cl_int res = CL_SUCCESS;
res |= kernel.setArg(idx++, global_dim0);
res |= kernel.setArg(idx++, global_dim1);
res |= kernel.setArg(idx++, openCLBuffer(output));
MNN_CHECK_CL_SUCCESS(res, "setArg buffer_set_zero");
res = runtime->commandQueue().enqueueNDRangeKernel(kernel, cl::NullRange,
cl::NDRange(gws[0], gws[1]),
cl::NDRange(lws[0], lws[1]), nullptr, nullptr);
MNN_CHECK_CL_SUCCESS(res, "buffer_set_zero");
}
if (srcDimensionFormat == dstDimensionFormat && MNN_DATA_FORMAT_NC4HW4 != dstDimensionFormat){
int size = outputShape[0] * outputShape[1] * outputShape[2] * outputShape[3];
uint32_t gws[2] = {static_cast<uint32_t>(UP_DIV(size, 4)), static_cast<uint32_t>(1)};
std::set<std::string> buildOptions;
if(size % 4 != 0){
buildOptions.emplace("-DPACK_LEAVE");
}
AddBuildOptionOfDataType(input, output, buildOptions, input_precision, output_precision, toDevice, toHost);
auto convertBufferKernelW = runtime->buildKernelWithCache("buffer_convert_buf", "buffer_copy_to_buffer", buildOptions, backend_precison);
auto convertBufferKernel = convertBufferKernelW->get();
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= convertBufferKernel.setArg(idx++, gws[0]);
ret |= convertBufferKernel.setArg(idx++, gws[1]);
#ifdef MNN_OPENCL_SVM_ENABLE
if(svmFlag == true && toDevice) {
ret |= clSetKernelArgSVMPointer(convertBufferKernel.get(), idx++, (const void *)input->deviceId());
}
else
#endif
{
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(input));
}
#ifdef MNN_OPENCL_SVM_ENABLE
if(svmFlag == true && toHost) {
ret |= clSetKernelArgSVMPointer(convertBufferKernel.get(), idx++, (const void *)output->deviceId());
}
else
#endif
{
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(output));
}
ret |= convertBufferKernel.setArg(idx++, size);
MNN_CHECK_CL_SUCCESS(ret, "setArg buffer_convert_to_buffer");
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernelW));
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
cl::Event event;
cl_int res;
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
for (size_t i = 0; i < lws.size(); ++i) {
roundUpGroupWorkSize[i] = ROUND_UP(gws[i], lws[i]);
}
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
cl::NDRange(lws[0], lws[1]), nullptr, &event);
MNN_CHECK_CL_SUCCESS(res, "buffer_convert_to_buffer");
if (true == needWait) {
event.wait();
}
} else{
uint32_t gws[3] = {static_cast<uint32_t>(shape[2] * shape[3]),
static_cast<uint32_t>(shape[1]),
static_cast<uint32_t>(shape[0])};
std::set<std::string> buildOptions;
buildOptions.emplace("-DINPUT_FORMAT=" + std::to_string(srcDimensionFormat));
buildOptions.emplace("-DOUTPUT_FORMAT=" + std::to_string(dstDimensionFormat));
AddBuildOptionOfDataType(input, output, buildOptions, input_precision, output_precision, toDevice, toHost);
auto convertBufferKernelW = runtime->buildKernelWithCache("buffer_convert_buf", "buffer_convert_to_buffer", buildOptions, backend_precison);
auto convertBufferKernel = convertBufferKernelW->get();
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= convertBufferKernel.setArg(idx++, gws[0]);
ret |= convertBufferKernel.setArg(idx++, gws[1]);
ret |= convertBufferKernel.setArg(idx++, gws[2]);
#ifdef MNN_OPENCL_SVM_ENABLE
if(svmFlag == true && toDevice) {
ret |= clSetKernelArgSVMPointer(convertBufferKernel.get(), idx++, (const void *)input->deviceId());
}
else
#endif
{
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(input));
}
ret |= convertBufferKernel.setArg(idx++, sizeof(shape), shape);
#ifdef MNN_OPENCL_SVM_ENABLE
if(svmFlag == true && toHost) {
ret |= clSetKernelArgSVMPointer(convertBufferKernel.get(), idx++, (const void *)output->deviceId());
}
else
#endif
{
ret |= convertBufferKernel.setArg(idx++, openCLBuffer(output));
}
MNN_CHECK_CL_SUCCESS(ret, "setArg buffer_convert_to_buffer");
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernelW));
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16), 1};
cl::Event event;
cl_int res;
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
for (size_t i = 0; i < lws.size(); ++i) {
roundUpGroupWorkSize[i] = ROUND_UP(gws[i], lws[i]);
}
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1], roundUpGroupWorkSize[2]),
cl::NDRange(lws[0], lws[1], lws[2]), nullptr, &event);
MNN_CHECK_CL_SUCCESS(res, "buffer_convert_to_buffer");
if (true == needWait) {
event.wait();
}
}
return true;
}
#ifdef __ANDROID__
bool convertBetweenAHDandCLmem(const Tensor *input, const Tensor *output, OpenCLRuntime *runtime, int precision, int memType, bool toDevice, bool toHost) {
std::set<std::string> buildOptions;
auto srcDimensionFormat = TensorUtils::getDescribe(input)->dimensionFormat;
auto dstDimensionFormat = TensorUtils::getDescribe(output)->dimensionFormat;
if(memType == IMAGE){
buildOptions.emplace("-DUSE_IMAGE");
}
buildOptions.emplace("-DINPUT_FORMAT=" + std::to_string(srcDimensionFormat));
buildOptions.emplace("-DOUTPUT_FORMAT=" + std::to_string(dstDimensionFormat));
std::vector<int> outputShape = toDevice ? tensorShapeFormat(output): tensorShapeFormat(input);
int shape[4] = {outputShape[0], outputShape[3], outputShape[1], outputShape[2]};//N C H W
uint32_t gws[3] = {static_cast<uint32_t>(UP_DIV(shape[3], 4)),
static_cast<uint32_t>(UP_DIV(shape[1], 4)),
static_cast<uint32_t>(shape[0] * shape[2])};
std::shared_ptr<KernelWrap> kernelW;
int format = AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM;
int stride = shape[3];
AHardwareBuffer_Desc Desc = {};
if(OpenCLSymbolsOperator::getOpenclSymbolsPtr()->isSupportAhardwareBufferFunc()){
if(toDevice){
MNNAHardwareBuffer_describe((AHardwareBuffer*)(((CLSharedMemReleaseBuffer*)TensorUtils::getSharedMem(input))->getSharedId()), &Desc);
}else{
MNNAHardwareBuffer_describe((AHardwareBuffer*)(((CLSharedMemReleaseBuffer*)TensorUtils::getSharedMem(output))->getSharedId()), &Desc);
}
format = Desc.format;
stride = Desc.stride;
}
if(format == AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM){
if(toDevice){
buildOptions.emplace("-DSHARED_TO_CL");
kernelW = runtime->buildKernelWithCache("glmem_convert", "gl_to_cl", buildOptions, precision, nullptr, output);
} else if(toHost){
buildOptions.emplace("-DCL_TO_SHARED");
kernelW = runtime->buildKernelWithCache("glmem_convert", "cl_to_gl", buildOptions, precision, input, nullptr);
}
}else if(format == AHARDWAREBUFFER_FORMAT_Y8Cb8Cr8_420){
if(toDevice){
buildOptions.emplace("-DSHARED_TO_CL");
kernelW = runtime->buildKernelWithCache("glmem_convert", "yuv_to_cl", buildOptions, precision, nullptr, output);
} else if(toHost){
buildOptions.emplace("-DCL_TO_SHARED");
kernelW = runtime->buildKernelWithCache("glmem_convert", "cl_to_yuv", buildOptions, precision, input, nullptr);
}
}else{
MNN_PRINT("convertGLMemBetweenCLmem only support AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM or AHARDWAREBUFFER_FORMAT_Y8Cb8Cr8_420!\n");
return false;
}
auto Kernel = kernelW->get();
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= Kernel.setArg(idx++, gws[0]);
ret |= Kernel.setArg(idx++, gws[1]);
ret |= Kernel.setArg(idx++, gws[2]);
if(toDevice){
ret |= Kernel.setArg(idx++, *((CLSharedMemReleaseBuffer*)TensorUtils::getSharedMem(input))->getMem());
}else{
if(memType == IMAGE) {
ret |= Kernel.setArg(idx++, openCLImage(input));
}
else {
ret |= Kernel.setArg(idx++, openCLBuffer(input));
}
}
if (toHost){
ret |= Kernel.setArg(idx++, *((CLSharedMemReleaseBuffer*)TensorUtils::getSharedMem(output))->getMem());
}else{
if(memType == IMAGE) {
ret |= Kernel.setArg(idx++, openCLImage(output));
} else {
ret |= Kernel.setArg(idx++, openCLBuffer(output));
}
}
ret |= Kernel.setArg(idx++, sizeof(shape), shape);
ret |= Kernel.setArg(idx++, stride);
MNN_CHECK_CL_SUCCESS(ret, "setArg glmem_convert");
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(kernelW));
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16), 1};
cl::Event event;
cl_int res;
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
for (size_t i = 0; i < lws.size(); ++i) {
roundUpGroupWorkSize[i] = ROUND_UP(gws[i], lws[i]);
}
res = runtime->commandQueue().enqueueNDRangeKernel(Kernel, cl::NullRange,
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1], roundUpGroupWorkSize[2]),
cl::NDRange(lws[0], lws[1], lws[2]), nullptr, &event);
event.wait();
MNN_CHECK_CL_SUCCESS(res, "glmem_convert");
return true;
}
#endif
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */