mirror of https://github.com/alibaba/MNN.git
707 lines
26 KiB
C++
707 lines
26 KiB
C++
//
|
|
// PostConverter.cpp
|
|
// MNNConverter
|
|
//
|
|
// Created by MNN on 2019/01/31.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <unordered_set>
|
|
|
|
#include <MNN/expr/Optimizer.hpp>
|
|
#include <set>
|
|
#include <MNN/expr/ExecutorScope.hpp>
|
|
#include "PostConverter.hpp"
|
|
#include "PostTreatUtils.hpp"
|
|
#include "Program.hpp"
|
|
#include "SubGraphComplete.hpp"
|
|
#include "GenerateSubGraph.hpp"
|
|
#include "TemplateMerge.hpp"
|
|
#include "core/Backend.hpp"
|
|
#include "RuntimeAttr.hpp"
|
|
|
|
#include <MNN/expr/ExecutorScope.hpp>
|
|
#include "Utils.hpp"
|
|
//#define MNN_POST_CONVERTER_DEBUG
|
|
|
|
namespace MNN {
|
|
namespace Express {
|
|
static std::vector<int> NetInputIndices(const MNN::NetT* net) {
|
|
std::vector<int> input_indices;
|
|
for (const auto& op : net->oplists) {
|
|
if (op->type == MNN::OpType_Input) {
|
|
const auto& indices = op->outputIndexes;
|
|
input_indices.insert(input_indices.end(), indices.begin(), indices.end());
|
|
}
|
|
}
|
|
return std::move(input_indices);
|
|
}
|
|
|
|
SubGraphProtoT* FindSubGraphByName(const std::vector<SubGraphProtoT*>& subgraphs, const std::string& subgraph_name) {
|
|
for (SubGraphProtoT* subgraph : subgraphs) {
|
|
if (subgraph->name == subgraph_name) {
|
|
return subgraph;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool CompleteSubGraph(const std::unordered_map<std::string, VARP>& inputs, const SubGraphProtoT* subgraph) {
|
|
auto* ctx = Global<OptimizeContext>::Get();
|
|
auto config = Global<modelConfig>::Get();
|
|
MNN_ASSERT(ctx != nullptr);
|
|
// Disable verbose for subgraph.
|
|
bool verbose = ctx->verbose;
|
|
ctx->verbose = false;
|
|
std::vector<std::string> outputNames;
|
|
for (auto o : subgraph->outputs) {
|
|
outputNames.emplace_back(subgraph->tensors[o]);
|
|
}
|
|
std::vector<std::string> inputNames;
|
|
for (auto index : subgraph->inputs) {
|
|
inputNames.emplace_back(subgraph->tensors[index]);
|
|
}
|
|
|
|
SubGraphProtoT* mutable_subgraph = // NOLINT
|
|
FindSubGraphByName(ctx->subgraphs, subgraph->name);
|
|
MNN_ASSERT(mutable_subgraph == subgraph);
|
|
std::unique_ptr<MNN::NetT> subnet(new MNN::NetT);
|
|
subnet->oplists = std::move(mutable_subgraph->nodes);
|
|
subnet->tensorName = mutable_subgraph->tensors;
|
|
subnet->sourceType = ctx->source;
|
|
subnet->outputName = outputNames;
|
|
bool gDebug = false;
|
|
if (gDebug) {
|
|
flatbuffers::FlatBufferBuilder builder;
|
|
builder.Finish(MNN::Net::Pack(builder, subnet.get()));
|
|
std::ofstream output("temp.before_opt.mnn", std::ofstream::binary);
|
|
output.write((const char*)builder.GetBufferPointer(), builder.GetSize());
|
|
}
|
|
config->inSubGraph = true;
|
|
std::unique_ptr<MNN::NetT> new_subnet = ctx->RunOptimize(subnet, inputs);
|
|
config->inSubGraph = false;
|
|
if (gDebug) {
|
|
flatbuffers::FlatBufferBuilder builder;
|
|
builder.Finish(MNN::Net::Pack(builder, new_subnet.get()));
|
|
std::ofstream output("temp.after_opt.mnn", std::ofstream::binary);
|
|
output.write((const char*)builder.GetBufferPointer(), builder.GetSize());
|
|
}
|
|
mutable_subgraph->nodes = std::move(subnet->oplists);
|
|
|
|
MNN::SubGraphProtoT* new_subgraph(new MNN::SubGraphProtoT);
|
|
new_subgraph->name = mutable_subgraph->name;
|
|
if (ctx->source != NetSource_ONNX) {
|
|
new_subgraph->inputs = NetInputIndices(new_subnet.get());
|
|
} else {
|
|
new_subgraph->inputs.resize(inputNames.size());
|
|
for (int i=0; i<inputNames.size(); ++i) {
|
|
for (int j=0; j<new_subnet->tensorName.size(); ++j) {
|
|
if (new_subnet->tensorName[j] == inputNames[i]) {
|
|
new_subgraph->inputs[i] = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
new_subgraph->outputs.clear();
|
|
outputNames = new_subnet->outputName;
|
|
for (auto& output : outputNames) {
|
|
bool find = false;
|
|
for (int i = 0; i < new_subnet->tensorName.size(); ++i) {
|
|
if (new_subnet->tensorName[i] == output) {
|
|
find = true;
|
|
new_subgraph->outputs.emplace_back(i);
|
|
break;
|
|
}
|
|
}
|
|
if (!find) {
|
|
MNN_ERROR("Can't find output for %s\n", output.c_str());
|
|
}
|
|
}
|
|
MNN_ASSERT(new_subgraph->outputs.size() == outputNames.size());
|
|
new_subgraph->nodes = std::move(new_subnet->oplists);
|
|
new_subgraph->tensors = new_subnet->tensorName;
|
|
|
|
MNN_ASSERT(!FindSubGraphByName(ctx->completed_subgraphs, new_subgraph->name));
|
|
ctx->completed_subgraphs.push_back(new_subgraph);
|
|
|
|
// Recovery verbose.
|
|
ctx->verbose = verbose;
|
|
return true;
|
|
}
|
|
|
|
static bool _hasDupName(std::unique_ptr<MNN::NetT>& originNet) {
|
|
std::set<std::string> names;
|
|
for (auto& tensorName : originNet->tensorName) {
|
|
if (names.find(tensorName) != names.end()) {
|
|
MNN_ERROR("Repeat name %s\n", tensorName.c_str());
|
|
return true;
|
|
}
|
|
names.insert(tensorName);
|
|
}
|
|
return false;
|
|
}
|
|
void RunNetPass(const std::vector<std::string>& passes, std::unique_ptr<MNN::NetT>& originNet) {
|
|
for (auto pass : passes) {
|
|
auto convert = PostConverter::get(pass);
|
|
if (nullptr == convert) {
|
|
LOG(INFO) << "Can't find pass of " << pass << "\n";
|
|
continue;
|
|
}
|
|
auto originSize = originNet->oplists.size();
|
|
bool valid = convert->onExecute(originNet);
|
|
#ifdef DEBUG
|
|
auto hasDup = _hasDupName(originNet);
|
|
if (originSize != originNet->oplists.size() || hasDup) {
|
|
MNN_PRINT("%s: %d -> %d, dup: %d\n", pass.c_str(), originSize, originNet->oplists.size(), hasDup);
|
|
}
|
|
#endif
|
|
if (!valid) {
|
|
LOG(INFO) << "Run " << pass << "Error\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<MNN::NetT> RunExtraPass(std::unique_ptr<MNN::NetT>& originNet,
|
|
const std::unordered_map<std::string, VARP>& inputs) {
|
|
auto program = MNN::Express::Program::create(originNet.get(), true, true);
|
|
program->input(inputs, true);
|
|
|
|
std::string pass = "TFExtra";
|
|
switch (originNet->sourceType) {
|
|
case MNN::NetSource_TFLITE:
|
|
pass = "TFliteExtra";
|
|
break;
|
|
case MNN::NetSource_TENSORFLOW:
|
|
pass = "TFExtra";
|
|
break;
|
|
case MNN::NetSource_CAFFE:
|
|
pass = "CaffeExtra";
|
|
break;
|
|
case MNN::NetSource_ONNX:
|
|
pass = "OnnxExtra";
|
|
break;
|
|
case MNN::NetSource_TORCH:
|
|
pass = "TorchExtra";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
auto& merge = MNN::Express::TemplateMerge::getInstance(pass);
|
|
merge.onExecute(program->outputs());
|
|
originNet->oplists.clear();
|
|
originNet->tensorName.clear();
|
|
|
|
std::unique_ptr<MNN::NetT> newNet(new MNN::NetT);
|
|
newNet->sourceType = originNet->sourceType;
|
|
newNet->bizCode = originNet->bizCode;
|
|
newNet->outputName = originNet->outputName;
|
|
program->save(newNet.get());
|
|
return std::move(newNet);
|
|
}
|
|
|
|
std::unique_ptr<MNN::NetT> RunMergePass(std::unique_ptr<MNN::NetT>& originNet,
|
|
const std::unordered_map<std::string, VARP>& inputs, PassPriority priority) {
|
|
auto program = MNN::Express::Program::create(originNet.get(), true, true);
|
|
auto boundary = program->input(inputs, true);
|
|
|
|
std::string pass = "Merge";
|
|
auto& merge = MNN::Express::TemplateMerge::getInstance(pass);
|
|
std::map<std::string, VARP> updateVars;
|
|
merge.onExecute(program->outputs(), priority, updateVars, boundary);
|
|
|
|
auto Update = [&](std::shared_ptr<Program> program, const std::vector<std::string>& tensorName) {
|
|
program->updateVars(updateVars, tensorName);
|
|
};
|
|
|
|
Update(program, originNet->tensorName);
|
|
|
|
originNet->oplists.clear();
|
|
originNet->tensorName.clear();
|
|
|
|
std::unique_ptr<MNN::NetT> newNet(new MNN::NetT);
|
|
newNet->sourceType = originNet->sourceType;
|
|
newNet->bizCode = originNet->bizCode;
|
|
newNet->outputName = originNet->outputName;
|
|
program->save(newNet.get());
|
|
|
|
RunNetPass({"RemoveUnusefulOp"}, newNet);
|
|
return std::move(newNet);
|
|
}
|
|
|
|
std::unique_ptr<MNN::NetT> optimizeNetImpl(std::unique_ptr<MNN::NetT>& originNet,
|
|
const std::unordered_map<std::string, VARP>& inputs) {
|
|
auto current = ExecutorScope::Current();
|
|
current->lazyEval = true;
|
|
current->setLazyComputeMode(Executor::LAZY_FULL);
|
|
current->getAttr()->externalFile = ".__convert_external_data.bin";
|
|
|
|
auto* ctx = Global<OptimizeContext>::Get();
|
|
MNN_ASSERT(ctx != nullptr);
|
|
|
|
if (ctx->is_training) {
|
|
LOG(INFO) << "convert model for training, reserve BatchNorm and Dropout";
|
|
}
|
|
if (originNet->oplists.size() <= 0) {
|
|
return nullptr;
|
|
}
|
|
std::vector<std::string> postConvertPass;
|
|
postConvertPass = {
|
|
// Separate Tensor for inplace op
|
|
"RemoveInplace",
|
|
|
|
// Remove Unuseful Op such as NoOp, Identity, Seq2Out,
|
|
"RemoveUnusefulOp",
|
|
|
|
// Remove Dropout, if `forTraining` flag is set, Dropout will be reserved
|
|
"RemoveDropout",
|
|
|
|
// Remove Dup op
|
|
"FuseDupOp",
|
|
|
|
// Remove Invalid Cast
|
|
"RemoveInvalidCast",
|
|
|
|
// Turn InnerProduct from Caffe / Onnx to Convolution
|
|
"TransformInnerProduct",
|
|
|
|
// Turn Im2Seq from Caffe to Reshape
|
|
"TransformIm2Seq",
|
|
|
|
// Turn Caffe's ShuffleChannel to compose op
|
|
"TransformShuffleChannel",
|
|
|
|
"MoveUnaryOpBeforeReshape",
|
|
|
|
};
|
|
if (ctx->is_training) {
|
|
std::vector<std::string>::iterator iter = postConvertPass.begin();
|
|
while (iter != postConvertPass.end()) {
|
|
if (*iter == "RemoveDropout") {
|
|
iter = postConvertPass.erase(iter);
|
|
}
|
|
else {
|
|
iter++;
|
|
}
|
|
}
|
|
}
|
|
RunNetPass(postConvertPass, originNet);
|
|
std::vector<std::string> midOptPass = {
|
|
// Remove Dup op
|
|
"FuseDupOp",
|
|
// Remove Invalid Cast
|
|
"RemoveInvalidCast"
|
|
};
|
|
std::vector<std::unique_ptr<TensorDescribeT>> tensorDescribe;
|
|
if (originNet->extraTensorDescribe.size() > 0) {
|
|
tensorDescribe = std::move(originNet->extraTensorDescribe);
|
|
}
|
|
|
|
std::unique_ptr<MNN::NetT> newNet;
|
|
newNet = std::move(RunExtraPass(originNet, inputs));
|
|
RunNetPass(midOptPass, newNet);
|
|
newNet = std::move(RunMergePass(newNet, inputs, PASS_PRIORITY_FRONT));
|
|
newNet = std::move(RunMergePass(newNet, inputs, PASS_PRIORITY_HIGH));
|
|
|
|
std::vector<std::string> afterProgramConvert = {
|
|
// Turn BatchNormal to Scale When inference, if `forTraining` flag is set, BN will be reserved
|
|
"TransformBatchNormal",
|
|
|
|
// expand ShapeN to N Shapes
|
|
"ResolveTfShapeN",
|
|
|
|
// WARNNING: should merge BN and Scale before Relu and Relu6
|
|
|
|
// Merge BN info Convolution, if `forTraining` flag is set, BN will be reserved
|
|
"MergeBNToConvolution",
|
|
|
|
// Merge Scale info Convolution
|
|
"MergeScaleToConvolution",
|
|
|
|
// Merge Relu Convolution
|
|
"MergeReluToConvolution",
|
|
|
|
// Merge Relu6 Convolution
|
|
"MergeRelu6ToConvolution",
|
|
|
|
// Merge Relu BinaryOp
|
|
"MergeReluToBinaryOp",
|
|
|
|
};
|
|
if (ctx->is_training) {
|
|
std::vector<std::string>::iterator iter = afterProgramConvert.begin();
|
|
while (iter != afterProgramConvert.end()) {
|
|
if (*iter == "TransformBatchNormal" || *iter == "MergeBNToConvolution") {
|
|
iter = afterProgramConvert.erase(iter);
|
|
}
|
|
else {
|
|
iter++;
|
|
}
|
|
}
|
|
}
|
|
RunNetPass(afterProgramConvert, newNet);
|
|
|
|
newNet = std::move(RunMergePass(newNet, inputs, PASS_PRIORITY_MIDDLE));
|
|
|
|
afterProgramConvert = {
|
|
"RemoveCopy",
|
|
// Add tensor dimension format convert for NC4HW4 - NHWC / NC4HW4 - NCHW
|
|
"AddTensorFormatConverter",
|
|
|
|
// Turn group convolution to Slice - Convolution - Concat
|
|
"TransformGroupConvolution",
|
|
"TransformGroupConvolution3D",
|
|
|
|
"FuseDupOp",
|
|
// Remove output tensor convert
|
|
"RemoveOutputTensorConvert",
|
|
};
|
|
RunNetPass(afterProgramConvert, newNet);
|
|
|
|
// Maybe eliminate the redundant quantize and dequantize ops, then remove
|
|
// the unuseful `Identity`.
|
|
newNet = std::move(RunMergePass(newNet, inputs, PASS_PRIORITY_LOW));
|
|
|
|
// Maybe eliminate the redundant tensor format ops, then remove the unuseful
|
|
// `Identity`.
|
|
newNet = std::move(RunMergePass(newNet, inputs, PASS_PRIORITY_LOW));
|
|
newNet = std::move(RunMergePass(newNet, inputs, PASS_PRIORITY_FINAL));
|
|
|
|
if (tensorDescribe.size() > 0) {
|
|
newNet->extraTensorDescribe = std::move(tensorDescribe);
|
|
}
|
|
RunNetPass({"ReIndexTensor"}, newNet);
|
|
RunNetPass({"ReIndexOnnxIfAlias"}, newNet);
|
|
|
|
return std::move(newNet);
|
|
}
|
|
|
|
bool fuseConstIntoSubgraph(MNN::NetT* net, const std::vector<MNN::SubGraphProtoT*>& subgraphs) {
|
|
if (subgraphs.empty()) {
|
|
return false;
|
|
}
|
|
// Create Map for subGraphs
|
|
// Key, protot, refcount
|
|
std::map<std::string, std::pair<MNN::SubGraphProtoT*, int>> subGraphMaps;
|
|
std::set<MNN::SubGraphProtoT*> modifiedSubGraph;
|
|
for (auto s : subgraphs) {
|
|
subGraphMaps.insert(std::make_pair(s->name, std::make_pair(s, 0)));
|
|
}
|
|
for (int i = 0; i < net->oplists.size(); ++i) {
|
|
auto& op = net->oplists[i];
|
|
if (op->type == MNN::OpType_While) {
|
|
auto param = op->main.AsWhileParam();
|
|
subGraphMaps[param->body_graph].second++;
|
|
subGraphMaps[param->cond_graph].second++;
|
|
continue;
|
|
}
|
|
if (op->type == MNN::OpType_If) {
|
|
auto param = op->main.AsIfParam();
|
|
subGraphMaps[param->else_graph].second++;
|
|
subGraphMaps[param->then_graph].second++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Try Merge Const into subgraph
|
|
// Search all const op
|
|
std::vector<int> constOpIndexes(net->tensorName.size(), -1);
|
|
for (int i = 0; i < net->oplists.size(); ++i) {
|
|
auto& op = net->oplists[i];
|
|
if (op->type == MNN::OpType_Const) {
|
|
constOpIndexes[op->outputIndexes[0]] = i;
|
|
}
|
|
}
|
|
|
|
// Try Merge for while
|
|
std::set<int> removeConstOpIndexes;
|
|
for (int opIndex = 0; opIndex < net->oplists.size(); ++opIndex) {
|
|
auto& op = net->oplists[opIndex];
|
|
if (op->type != MNN::OpType_While) {
|
|
continue;
|
|
}
|
|
auto param = op->main.AsWhileParam();
|
|
if (param->cond_graph.empty()) {
|
|
// If cond_graph is empty, it come from onnx's loop
|
|
// TODO: Support Loop from onnx
|
|
continue;
|
|
}
|
|
auto body = subGraphMaps[param->body_graph];
|
|
auto cond = subGraphMaps[param->cond_graph];
|
|
// Don't support for shared subgrah's optimize
|
|
if (body.second > 1 || cond.second > 1) {
|
|
continue;
|
|
}
|
|
MNN_ASSERT(op->inputIndexes.size() == param->aliases_inputs.size());
|
|
|
|
// Merge into subgraph
|
|
std::set<int> removeInputs;
|
|
std::set<int> bodyInputRemove;
|
|
std::set<int> condInputRemove;
|
|
auto mergeToSubGraph = [](MNN::SubGraphProtoT* subGraph, std::set<int>& inputRemove, const MNN::OpT* constOp,
|
|
const std::string& inputName) {
|
|
// Merge Const Index to Body
|
|
for (auto& inputIndex : subGraph->inputs) {
|
|
if (subGraph->tensors[inputIndex] == inputName) {
|
|
inputRemove.insert(inputIndex);
|
|
for (int v = 0; v < subGraph->nodes.size(); ++v) {
|
|
auto& subOp = subGraph->nodes[v];
|
|
if (subOp->type != MNN::OpType_Input) {
|
|
continue;
|
|
}
|
|
if (subOp->outputIndexes[0] == inputIndex) {
|
|
auto src = constOp->main.AsBlob();
|
|
subOp->type = MNN::OpType_Const;
|
|
subOp->main.type = MNN::OpParameter_Blob;
|
|
subOp->main.value = new MNN::BlobT;
|
|
*subOp->main.AsBlob() = *src;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
for (int subI = 0; subI < op->inputIndexes.size(); ++subI) {
|
|
auto index = op->inputIndexes[subI];
|
|
auto constIndex = constOpIndexes[index];
|
|
if (constIndex < 0) {
|
|
continue;
|
|
}
|
|
// Don't support for graph shared input
|
|
if (param->aliases_inputs[subI]->data.size() != 1) {
|
|
continue;
|
|
}
|
|
auto inputName = param->aliases_inputs[subI]->data[0];
|
|
// Don't support for const init and update next
|
|
bool isUpdate = false;
|
|
for (auto& update : param->aliases_updates) {
|
|
for (auto updateName : update->data) {
|
|
if (updateName == inputName) {
|
|
isUpdate = true;
|
|
break;
|
|
}
|
|
}
|
|
if (isUpdate) {
|
|
break;
|
|
}
|
|
}
|
|
if (isUpdate) {
|
|
continue;
|
|
}
|
|
// Count Refcount for const tensor
|
|
int refCount = 0;
|
|
for (int sub = constIndex + 1; sub < net->oplists.size(); ++sub) {
|
|
auto& subOp = net->oplists[sub];
|
|
for (auto subIndex : subOp->inputIndexes) {
|
|
if (subIndex == index) {
|
|
refCount++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (refCount > 1) {
|
|
// The const input is shared with other op
|
|
continue;
|
|
}
|
|
auto& constOp = net->oplists[constIndex];
|
|
//FUNC_PRINT_ALL(constOp->name.c_str(), s);
|
|
MNN_ASSERT(constOp->main.type == MNN::OpParameter_Blob);
|
|
|
|
removeConstOpIndexes.insert(constIndex);
|
|
mergeToSubGraph(body.first, bodyInputRemove, constOp.get(), inputName);
|
|
mergeToSubGraph(cond.first, condInputRemove, constOp.get(), inputName);
|
|
removeInputs.insert(subI);
|
|
|
|
modifiedSubGraph.insert(body.first);
|
|
modifiedSubGraph.insert(cond.first);
|
|
|
|
// Release no needed Const Memory
|
|
constOp->main.Reset();
|
|
}
|
|
auto removeSubGraphInputs = [](MNN::SubGraphProtoT* subGraph, const std::set<int>& inputRemove) {
|
|
auto originInput = std::move(subGraph->inputs);
|
|
subGraph->inputs.clear();
|
|
for (auto index : originInput) {
|
|
if (inputRemove.find(index) == inputRemove.end()) {
|
|
subGraph->inputs.emplace_back(index);
|
|
}
|
|
}
|
|
};
|
|
removeSubGraphInputs(body.first, bodyInputRemove);
|
|
removeSubGraphInputs(cond.first, condInputRemove);
|
|
|
|
// Remove no use input for while op
|
|
auto originIndexes = std::move(op->inputIndexes);
|
|
auto aliInputs = std::move(param->aliases_inputs);
|
|
for (int subI = 0; subI < originIndexes.size(); ++subI) {
|
|
if (removeInputs.find(subI) == removeInputs.end()) {
|
|
op->inputIndexes.emplace_back(originIndexes[subI]);
|
|
param->aliases_inputs.emplace_back(std::move(aliInputs[subI]));
|
|
}
|
|
}
|
|
}
|
|
if (removeConstOpIndexes.empty()) {
|
|
return false;
|
|
}
|
|
auto originOpLists = std::move(net->oplists);
|
|
for (int i = 0; i < originOpLists.size(); ++i) {
|
|
if (removeConstOpIndexes.find(i) == removeConstOpIndexes.end()) {
|
|
net->oplists.emplace_back(std::move(originOpLists[i]));
|
|
}
|
|
}
|
|
// Try Optimize Subgraph for more const op get
|
|
auto* ctx = Global<OptimizeContext>::Get();
|
|
std::unordered_map<std::string, VARP> empty;
|
|
for (auto mutable_subgraph : modifiedSubGraph) {
|
|
std::unique_ptr<MNN::NetT> subnet(new MNN::NetT);
|
|
subnet->oplists = std::move(mutable_subgraph->nodes);
|
|
subnet->tensorName = std::move(mutable_subgraph->tensors);
|
|
subnet->sourceType = ctx->source;
|
|
std::vector<std::string> inputNames;
|
|
std::vector<std::string> outputNames;
|
|
for (auto v: mutable_subgraph->inputs) {
|
|
inputNames.emplace_back(subnet->tensorName[v]);
|
|
}
|
|
for (auto v: mutable_subgraph->outputs) {
|
|
outputNames.emplace_back(subnet->tensorName[v]);
|
|
}
|
|
#ifdef MNN_POST_CONVERTER_DEBUG
|
|
for (auto& v : outputNames) {
|
|
FUNC_PRINT_ALL(v.c_str(), s);
|
|
}
|
|
FUNC_PRINT_ALL(mutable_subgraph->name.c_str(), s);
|
|
#endif
|
|
subnet->outputName = outputNames;
|
|
|
|
std::unique_ptr<MNN::NetT> new_subnet = optimizeNetImpl(subnet, empty);
|
|
mutable_subgraph->nodes = std::move(subnet->oplists);
|
|
|
|
MNN::SubGraphProtoT* new_subgraph = mutable_subgraph;
|
|
for (int i = 0; i < inputNames.size(); ++i) {
|
|
auto& name = inputNames[i];
|
|
for (int v = 0; v < new_subnet->tensorName.size(); ++v) {
|
|
if (new_subnet->tensorName[v] == name) {
|
|
mutable_subgraph->inputs[i] = v;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (int i = 0; i < outputNames.size(); ++i) {
|
|
auto& name = outputNames[i];
|
|
for (int v = 0; v < new_subnet->tensorName.size(); ++v) {
|
|
if (new_subnet->tensorName[v] == name) {
|
|
mutable_subgraph->outputs[i] = v;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mutable_subgraph->nodes = std::move(new_subnet->oplists);
|
|
mutable_subgraph->tensors = std::move(new_subnet->tensorName);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace Express
|
|
} // namespace MNN
|
|
|
|
using namespace MNN;
|
|
using namespace MNN::Express;
|
|
std::unique_ptr<MNN::NetT> optimizeNet(std::unique_ptr<MNN::NetT>& originNet, bool forTraining, modelConfig& config, const std::vector<std::string>& expectPasses) {
|
|
BackendConfig bnConfig;
|
|
auto exe = ExecutorScope::Current();
|
|
Global<modelConfig>::Reset(&config);
|
|
if (!expectPasses.empty()) {
|
|
RunNetPass(expectPasses, originNet);
|
|
return std::move(originNet);
|
|
}
|
|
std::unique_ptr<std::ofstream, void(*)(std::ofstream*)> externalFile(
|
|
new std::ofstream(".__convert_external_data.bin", std::ios::binary),
|
|
[](std::ofstream* fs){
|
|
fs->close();
|
|
delete fs;
|
|
});
|
|
if (externalFile.get() && externalFile->is_open() && externalFile->good()) {
|
|
config.externalFile = externalFile.get();
|
|
} else {
|
|
config.externalFile = nullptr;
|
|
}
|
|
if (originNet->sourceType == NetSource_TENSORFLOW) {
|
|
GenerateSubGraph(originNet);
|
|
}
|
|
std::vector<MNN::SubGraphProtoT*> subgraphs;
|
|
for (auto& subgraph : originNet->subgraphs) {
|
|
subgraphs.push_back(subgraph.get());
|
|
}
|
|
OptimizeContext ctx;
|
|
ctx.subgraphs = subgraphs;
|
|
ctx.is_training = forTraining;
|
|
ctx.verbose = true;
|
|
ctx.source = originNet->sourceType;
|
|
ctx.completed_subgraphs = {};
|
|
ctx.RunOptimize = optimizeNetImpl;
|
|
|
|
Global<OptimizeContext>::Reset(&ctx);
|
|
std::unordered_map<std::string, VARP> inputs, empty;
|
|
// subgraph may depend on vars of outter subgraph or root net, getting vars of them need Program::create.
|
|
// But program (create from unoptimize net) may have OpType_Extra op, causing vars can't do getInfo/readMap correctly,
|
|
// then subgraph depend on it may convert failed (nullptr) or wrong (error shape)
|
|
// RunOptimize won't use subgraph, so we can do it before other subgraph optimize safely
|
|
std::unique_ptr<MNN::NetT> net = ctx.RunOptimize(originNet, empty);
|
|
auto program = Program::create(net.get(), true, true);
|
|
auto addVars = [&](std::shared_ptr<Program> program, const std::vector<std::string>& tensorName) {
|
|
for (const auto& iter : program->vars()) {
|
|
if (iter.first < tensorName.size() && iter.first >= 0) {
|
|
auto name = tensorName[iter.first];
|
|
if (inputs.find(name) == inputs.end()) {
|
|
inputs[name] = iter.second;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
addVars(program, net->tensorName);
|
|
// Reversing subgraph so we iterate them by topo order (like tree traversal), so every var used by subgraph be prepared
|
|
std::reverse(ctx.subgraphs.begin(), ctx.subgraphs.end());
|
|
for (int idx = 0; idx < ctx.subgraphs.size(); ++idx) {
|
|
// complete it first so OpType_Extra be removed
|
|
CompleteSubGraph(inputs, ctx.subgraphs[idx]);
|
|
auto new_graph = ctx.completed_subgraphs[idx];
|
|
auto subProgram = Program::create(new_graph, true, true);
|
|
subProgram->input(inputs, true);
|
|
// add vars of subgraph, so inner subgraph can use them
|
|
addVars(subProgram, new_graph->tensors);
|
|
}
|
|
ctx.first_run = false;
|
|
ctx.subgraphs = std::move(ctx.completed_subgraphs);
|
|
// from inner to upper, make some optimize for subgraph is visable to outer graph and root
|
|
std::reverse(ctx.subgraphs.begin(), ctx.subgraphs.end());
|
|
for (auto subgraph : ctx.subgraphs) {
|
|
CompleteSubGraph(inputs, subgraph);
|
|
}
|
|
net = ctx.RunOptimize(net, empty);
|
|
|
|
fuseConstIntoSubgraph(net.get(), ctx.completed_subgraphs);
|
|
for (auto* subgraph : ctx.completed_subgraphs) {
|
|
net->subgraphs.emplace_back(subgraph);
|
|
}
|
|
// Insert Extra graph for exe
|
|
std::set<std::string> existsSubGraphs;
|
|
for (auto& iter : net->subgraphs) {
|
|
existsSubGraphs.insert(iter->name);
|
|
}
|
|
auto originsubgraphs = std::move(net->subgraphs);
|
|
// TODO: Treat Depends
|
|
for (auto&& iter : exe->subgraph()) {
|
|
if (existsSubGraphs.find(iter.first) == existsSubGraphs.end()) {
|
|
MNN_PRINT("Insert Extra graph: %s\n", iter.first.c_str());
|
|
net->subgraphs.emplace_back(std::move(iter.second->info));
|
|
}
|
|
}
|
|
exe->subgraph().clear();
|
|
for (auto& iter : originsubgraphs) {
|
|
net->subgraphs.emplace_back(std::move(iter));
|
|
}
|
|
return std::move(net);
|
|
}
|