mirror of https://github.com/alibaba/MNN.git
1825 lines
107 KiB
C++
1825 lines
107 KiB
C++
//
|
|
// SoftmaxBufExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2024/04/11.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#ifdef MNN_SUPPORT_TRANSFORMER_FUSE
|
|
|
|
#include "backend/opencl/execution/buffer/AttentionBufExecution.hpp"
|
|
#include <fstream>
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
KVCacheCLManager::KVCacheCLManager(Backend *backend, bool kv_cahce) : mKVCache(kv_cahce){
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
}
|
|
|
|
void KVCacheCLManager::allocKVCache(const KVMeta* meta) {
|
|
if (!mKVCache) {
|
|
return;
|
|
}
|
|
mPastLength = meta != nullptr ? meta->previous : 0;
|
|
if(mOpenCLBackend->getPrecision() != BackendConfig::Precision_High){
|
|
mByte = 2;
|
|
}
|
|
reallocKVCache(meta, false);
|
|
}
|
|
|
|
bool KVCacheCLManager::reallocKVCache(const KVMeta* meta, bool isExecute) {
|
|
if (!mKVCache) {
|
|
return false;
|
|
}
|
|
int kvSeqlen = meta->previous + meta->add - meta->remove + meta->computeReverseSize();
|
|
int start = mPastLength - meta->remove;
|
|
cl_int res;
|
|
|
|
// latest length larger than maxLen
|
|
if(kvSeqlen > mMaxLength){
|
|
int copylen = mPastLength - meta->remove + meta->computeReverseSize();
|
|
bool needCopy = copylen > 0;
|
|
|
|
size_t oldSize = mKvNumHead * UP_DIV(mMaxLength, 4) * mHeadDim * 4 * mByte;
|
|
size_t oldMaxlen = ROUND_UP(mMaxLength, 4);
|
|
mMaxLength = kvSeqlen + mExpandChunk;
|
|
size_t newMaxlen = ROUND_UP(mMaxLength, 4);
|
|
size_t bufferSize = UP_DIV(mMaxLength, 4) * mKvNumHead * mHeadDim * 4 * mByte;
|
|
// past_key: [1, numhead, headdim, maxlen]
|
|
auto newKey = new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, bufferSize);
|
|
// past_value: [1, numhead, maxlen, headdim]
|
|
auto newValue = new cl::Buffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, bufferSize);
|
|
|
|
if(needCopy){
|
|
// copy key
|
|
{
|
|
size_t oldMaxlenSize = oldMaxlen * mByte;
|
|
size_t newMaxlenSize = newMaxlen * mByte;
|
|
char *newKeyPtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*newKey, true, CL_MAP_WRITE, 0, bufferSize, nullptr, nullptr, &res);
|
|
char *keyPtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastKey.get(), true, CL_MAP_READ, 0, oldSize, nullptr, nullptr, &res);
|
|
if(newKeyPtr != nullptr && keyPtr != nullptr && res == CL_SUCCESS){
|
|
for(int i = 0; i < mKvNumHead * mHeadDim; ++i){
|
|
::memcpy(newKeyPtr + i * newMaxlenSize, keyPtr + i * oldMaxlenSize, oldMaxlenSize);
|
|
}
|
|
}else{
|
|
MNN_ERROR("Map error key_ptr == nullptr \n");
|
|
MNN_ASSERT(false);
|
|
}
|
|
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*newKey, newKeyPtr);
|
|
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mPastKey.get(), keyPtr);
|
|
}
|
|
|
|
// copy value
|
|
{
|
|
char *newValuePtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*newValue, true, CL_MAP_WRITE, 0, bufferSize, nullptr, nullptr, &res);
|
|
char *valuePtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastValue.get(), true, CL_MAP_READ, 0, oldSize, nullptr, nullptr, &res);
|
|
if(newValuePtr != nullptr && valuePtr != nullptr && res == CL_SUCCESS){
|
|
for(int i = 0; i < mKvNumHead; ++i){
|
|
for(int j = 0; j < copylen; ++j){
|
|
::memcpy(newValuePtr + (i * newMaxlen + j) * mHeadDim * mByte, valuePtr + (i * oldMaxlen + j) * mHeadDim * mByte, mHeadDim * mByte);
|
|
}
|
|
}
|
|
}else{
|
|
MNN_ERROR("Map error value_ptr == nullptr \n");
|
|
MNN_ASSERT(false);
|
|
}
|
|
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*newValue, newValuePtr);
|
|
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(*mPastValue.get(), valuePtr);
|
|
}
|
|
}
|
|
mPastKey.reset(newKey);
|
|
mPastValue.reset(newValue);
|
|
// resize phase don't update mPastLength value, excute phase will update it
|
|
if(isExecute){
|
|
mPastLength = start;
|
|
}
|
|
}
|
|
|
|
// Remove
|
|
// resize phase don't remove kvcache, excute phase will do it
|
|
if(isExecute){
|
|
if (0 == meta->n_reserve) {
|
|
mPastLength = start;
|
|
return true;
|
|
}
|
|
|
|
size_t pastkvSize = mKvNumHead * UP_DIV(mMaxLength, 4) * mHeadDim * 4 * mByte;
|
|
char *keyPtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastKey.get(), true, CL_MAP_READ, 0, pastkvSize, nullptr, nullptr, &res);
|
|
char *valuePtr = (char*)mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(*mPastValue.get(), true, CL_MAP_READ, 0, pastkvSize, nullptr, nullptr, &res);
|
|
|
|
// TODO: need to ensure reserve info is sorted
|
|
for (int n = 0; n < meta->n_reserve; ++n) {
|
|
auto begin = meta->reserve[2 * n];
|
|
auto length = meta->reserve[2 * n + 1];
|
|
// past_key : [mKvNumHead, mHeadDim, mMaxLength]
|
|
// past_value : [mKvNumHead, mMaxLength, mHeadDim]
|
|
|
|
auto copySrcIndex = start + begin;
|
|
auto copyDstIndex = start;
|
|
for(int i = 0; i < mKvNumHead * mHeadDim; i++) {
|
|
::memcpy(keyPtr + (i * mMaxLength + copyDstIndex) * mByte, keyPtr + (i * mMaxLength + copySrcIndex) * mByte, length * mByte);
|
|
}
|
|
for(int i = 0; i < mKvNumHead; i++) {
|
|
for(int j = 0; j < length; j++) {
|
|
::memcpy(valuePtr + (i * mMaxLength + copyDstIndex + j) * mHeadDim * mByte, valuePtr + (i * mMaxLength + copySrcIndex + j) * mHeadDim * mByte, mHeadDim * mByte);
|
|
}
|
|
}
|
|
start += length;
|
|
}
|
|
mPastLength = (int)start;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void AttentionBufExecution::handleKVCache(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
if(mHasMask) {
|
|
auto mask = inputs[3];
|
|
mIsAddMask = (mask->getType() == halide_type_of<float>());
|
|
}
|
|
|
|
auto query = inputs[0];
|
|
auto key = inputs[1];
|
|
auto shape = query->shape();
|
|
|
|
int batch = shape[0];
|
|
int seqlen = shape[1];
|
|
int numHead = shape[2];
|
|
int kvNumHead = key->shape()[2];
|
|
int headDim = shape[3];
|
|
|
|
if(!mNeedKvCache) {
|
|
mPastKvSeqlen = 0;
|
|
mKvSeqlen = seqlen;
|
|
mKeyValueMaxlen = ROUND_UP(seqlen, 4);
|
|
mDecodeTmpMaxlen = ROUND_UP(seqlen, 4);
|
|
return;
|
|
}
|
|
MNN_ASSERT(inputs.size() >= 4);
|
|
auto mask = inputs[3];
|
|
auto mask_shape = mask->shape();
|
|
int mask_seqlen = mask_shape[2];
|
|
int maskKvlen = mask_shape[3];
|
|
mKVCacheCLManager->setArgs(numHead, kvNumHead, headDim);
|
|
mKVCacheCLManager->allocKVCache(mMeta);
|
|
mKeyValueMaxlen = ROUND_UP(mKVCacheCLManager->maxLength(), 4);
|
|
mDecodeTmpMaxlen = mKeyValueMaxlen;
|
|
mPastKvSeqlen = mKVCacheCLManager->pastKvLength();
|
|
mKvSeqlen = mPastKvSeqlen + seqlen;
|
|
}
|
|
|
|
ErrorCode AttentionBufExecution::init() {
|
|
if(!mNeedKvCache) {
|
|
return NO_ERROR;
|
|
}
|
|
//clear update arg vector, if prefill and decode use the same one
|
|
mOpRecordUpdateInfo.clear();
|
|
mRgQUpdateInfo.update_kernel_args.clear();
|
|
mRgQUpdateInfo.update_global_size.clear();
|
|
mRgQUpdateInfo.update_local_size.clear();
|
|
mRgMUpdateInfo.update_kernel_args.clear();
|
|
mRgMUpdateInfo.update_global_size.clear();
|
|
mRgMUpdateInfo.update_local_size.clear();
|
|
mRgUpdateInfo.update_kernel_args.clear();
|
|
mRgUpdateInfo.update_global_size.clear();
|
|
mRgUpdateInfo.update_local_size.clear();
|
|
mQkUpdateInfo.update_kernel_args.clear();
|
|
mQkUpdateInfo.update_global_size.clear();
|
|
mQkUpdateInfo.update_local_size.clear();
|
|
mSoftMaxUpdateInfo.update_kernel_args.clear();
|
|
mSoftMaxUpdateInfo.update_global_size.clear();
|
|
mSoftMaxUpdateInfo.update_local_size.clear();
|
|
mRgVUpdateInfo.update_kernel_args.clear();
|
|
mRgVUpdateInfo.update_global_size.clear();
|
|
mRgVUpdateInfo.update_local_size.clear();
|
|
mQkvUpdateInfo.update_kernel_args.clear();
|
|
mQkvUpdateInfo.update_global_size.clear();
|
|
mQkvUpdateInfo.update_local_size.clear();
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode AttentionBufExecution::UpdateArgs(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
|
|
if(!mNeedKvCache) {
|
|
return NO_ERROR;
|
|
}
|
|
|
|
auto query = inputs[0];
|
|
auto key = inputs[1];
|
|
auto value = inputs[2];
|
|
auto mask = inputs[3];
|
|
auto shape = query->shape();
|
|
|
|
int batch = shape[0];
|
|
int seqlen = shape[1];
|
|
int numHead = shape[2];
|
|
int kvNumHead = key->shape()[2];
|
|
int headDim = shape[3];
|
|
int group_size = numHead / kvNumHead;
|
|
float scale = 1.0 / sqrt(headDim);
|
|
auto mask_shape = mask->shape();
|
|
int mask_seqlen = mask_shape[2];
|
|
int maskKvlen = mask_shape[3];
|
|
mPastKvSeqlen = mKVCacheCLManager->pastKvLength();
|
|
mKvSeqlen = mKVCacheCLManager->pastKvLength() + seqlen;
|
|
mKVCacheCLManager->addKvLength(seqlen);
|
|
// prefill
|
|
if(mIsDecode == false){
|
|
int maskKvlen = mKvSeqlen;
|
|
int maskQlen = seqlen;
|
|
if(mHasMask) {
|
|
auto mask = inputs[3];
|
|
auto mask_shape = mask->shape();
|
|
maskQlen = mask_shape[2];
|
|
maskKvlen = mask_shape[3];
|
|
}
|
|
// key value static memory has been changed, need reset args
|
|
if(mKeyValueMaxlen != ROUND_UP(mKVCacheCLManager->maxLength(), 4)){
|
|
mKeyValueMaxlen = ROUND_UP(mKVCacheCLManager->maxLength(), 4);
|
|
}
|
|
if(false == mLongPrefill){
|
|
mGlobalWorkSizeQk0 = UP_DIV(mKvSeqlen, 4);
|
|
mQkPrefillGlobal_size[1] = ROUND_UP(mGlobalWorkSizeQk0, std::max((uint32_t)1, mLocalWorkSizeQk[1]));
|
|
mGlobalWorkSizeQk[1] = mQkPrefillGlobal_size[1];
|
|
mTempQ.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * batch * numHead}));
|
|
mTempQK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * mKvSeqlen * numHead * batch}));
|
|
mTempSoftMax.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * mKvSeqlen * numHead * batch}));
|
|
if(mIsAddMask) {
|
|
mTempMask.reset(Tensor::createDevice<float>({ROUND_UP(maskQlen, 4) * ROUND_UP(maskKvlen, 4) * batch}));
|
|
} else {
|
|
mTempMask.reset(Tensor::createDevice<uint32_t>({ROUND_UP(maskQlen, 4) * ROUND_UP(maskKvlen, 4) * batch}));
|
|
}
|
|
mOpenCLBackend->onAcquireBuffer(mTempQ.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onAcquireBuffer(mTempMask.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempQ.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempMask.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
}
|
|
#ifndef ENABLE_OPENCL_TIME_PROFILER
|
|
if(mOpenCLBackend->isUseRecordQueue()){
|
|
if(mLongPrefill){
|
|
mRgUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))();
|
|
mRgUpdateInfo.update_kernel_args[1].arg_value = &(*(mKVCacheCLManager->value()))();
|
|
}else{
|
|
mRgQUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempQ.get())();
|
|
mRgUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))();
|
|
mRgMUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempMask.get())();
|
|
mQkUpdateInfo.update_kernel_args[1].arg_value = &openCLDeferBuffer(mTempQ.get())();
|
|
mQkUpdateInfo.update_kernel_args[2].arg_value = &(*(mKVCacheCLManager->key()))();
|
|
if(mHasMask){
|
|
mQkUpdateInfo.update_kernel_args[3].arg_value = &openCLDeferBuffer(mTempMask.get())();
|
|
mQkUpdateInfo.update_kernel_args[4].arg_value = &openCLDeferBuffer(mTempQK.get())();
|
|
}else{
|
|
mQkUpdateInfo.update_kernel_args[3].arg_value = &openCLDeferBuffer(mTempQK.get())();
|
|
}
|
|
mSoftMaxUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempQK.get())();
|
|
mSoftMaxUpdateInfo.update_kernel_args[1].arg_value = &openCLDeferBuffer(mTempSoftMax.get())();
|
|
mRgVUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))();
|
|
mQkvUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempSoftMax.get())();
|
|
mQkvUpdateInfo.update_kernel_args[1].arg_value = &(*(mKVCacheCLManager->value()))();
|
|
}
|
|
} else {
|
|
#endif
|
|
if(mLongPrefill){
|
|
// rearrange key value
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrange_vec[0]->get().setArg(9, *mKVCacheCLManager->key());
|
|
ret |= mKernel_rearrange_vec[0]->get().setArg(10, *mKVCacheCLManager->value());
|
|
ret |= mKernel_rearrange_vec[0]->get().setArg(14, mKeyValueMaxlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_k");
|
|
}else{
|
|
{
|
|
// rearrange query
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrangeQ->get().setArg(4, openCLDeferBuffer(mTempQ.get()));
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_q");
|
|
}
|
|
{
|
|
// rearrange key
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrange->get().setArg(4, *mKVCacheCLManager->key());
|
|
ret |= mKernel_rearrange->get().setArg(5, mPastKvSeqlen);
|
|
ret |= mKernel_rearrange->get().setArg(6, mKeyValueMaxlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_k");
|
|
}
|
|
if(mHasMask){
|
|
// rearrange mask
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrangeMask->get().setArg(4, openCLDeferBuffer(mTempMask.get()));
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_mask_shortprefill");
|
|
}
|
|
{
|
|
// matmul qk
|
|
mGlobalWorkSizeQk = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(UP_DIV(mKvSeqlen, 4)), static_cast<uint32_t>(numHead*batch)};
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qk->get().setArg(1, mGlobalWorkSizeQk0);
|
|
ret |= mKernel_qk->get().setArg(3, openCLDeferBuffer(mTempQ.get()));
|
|
ret |= mKernel_qk->get().setArg(4, *mKVCacheCLManager->key());
|
|
if(mHasMask) {
|
|
ret |= mKernel_qk->get().setArg(5, openCLDeferBuffer(mTempMask.get()));
|
|
}
|
|
ret |= mKernel_qk->get().setArg(6, openCLDeferBuffer(mTempQK.get()));
|
|
ret |= mKernel_qk->get().setArg(10, mKvSeqlen);
|
|
ret |= mKernel_qk->get().setArg(11, mKeyValueMaxlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qk_decode");
|
|
mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0]));
|
|
mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1]));
|
|
mGlobalWorkSizeQk[2] = ROUND_UP(mGlobalWorkSizeQk[2], std::max((uint32_t)1, mLocalWorkSizeQk[2]));
|
|
}
|
|
{
|
|
// softmax
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_softmax->get().setArg(3, openCLDeferBuffer(mTempQK.get()));
|
|
ret |= mKernel_softmax->get().setArg(4, openCLDeferBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_softmax->get().setArg(7, mKvSeqlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg softmax");
|
|
}
|
|
{
|
|
// rearrange value
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrangeV->get().setArg(4, *mKVCacheCLManager->value());
|
|
ret |= mKernel_rearrangeV->get().setArg(5, mPastKvSeqlen);
|
|
ret |= mKernel_rearrangeV->get().setArg(6, mKeyValueMaxlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_v");
|
|
}
|
|
{
|
|
// qk * value
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qkv->get().setArg(3, openCLDeferBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_qkv->get().setArg(4, *mKVCacheCLManager->value());
|
|
ret |= mKernel_qkv->get().setArg(7, mKvSeqlen);
|
|
ret |= mKernel_qkv->get().setArg(8, mKeyValueMaxlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qkv_decode");
|
|
}
|
|
}
|
|
#ifndef ENABLE_OPENCL_TIME_PROFILER
|
|
}
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
// Decode
|
|
mKeyValueMaxlen = ROUND_UP(mKVCacheCLManager->maxLength(), 4);
|
|
if(mKvSeqlen > mDecodeTmpMaxlen){
|
|
mDecodeTmpMaxlen = mKeyValueMaxlen;
|
|
mTempQK.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead}));
|
|
mTempSoftMax.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead}));
|
|
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
}
|
|
mGlobalWorkSizeQk0 = UP_DIV(mKvSeqlen, 4);
|
|
mQkGlobal_size[0] = ROUND_UP(mGlobalWorkSizeQk0, std::max((uint32_t)1, mLocalWorkSizeQk[0]));
|
|
mGlobalWorkSizeQk[0] = mQkGlobal_size[0];
|
|
|
|
#ifndef ENABLE_OPENCL_TIME_PROFILER
|
|
// use record, only update args
|
|
if(mOpenCLBackend->isUseRecordQueue()){
|
|
mRgUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->key()))();
|
|
mQkUpdateInfo.update_kernel_args[1].arg_value = &(*(mKVCacheCLManager->key()))();
|
|
mQkUpdateInfo.update_kernel_args[2].arg_value = &openCLDeferBuffer(mTempQK.get())();
|
|
mSoftMaxUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempQK.get())();
|
|
mSoftMaxUpdateInfo.update_kernel_args[1].arg_value = &openCLDeferBuffer(mTempSoftMax.get())();
|
|
mRgVUpdateInfo.update_kernel_args[0].arg_value = &(*(mKVCacheCLManager->value()))();
|
|
mQkvUpdateInfo.update_kernel_args[0].arg_value = &openCLDeferBuffer(mTempSoftMax.get())();
|
|
mQkvUpdateInfo.update_kernel_args[1].arg_value = &(*(mKVCacheCLManager->value()))();
|
|
} else {
|
|
#endif
|
|
// not use record, need update args by using setArg
|
|
{
|
|
// rearrange key
|
|
uint32_t index = 4;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrange->get().setArg(index++, *mKVCacheCLManager->key());
|
|
ret |= mKernel_rearrange->get().setArg(index++, mPastKvSeqlen);
|
|
ret |= mKernel_rearrange->get().setArg(index++, mKeyValueMaxlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_k");
|
|
}
|
|
{
|
|
// matmul qk
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk0);
|
|
index++;
|
|
index++;
|
|
ret |= mKernel_qk->get().setArg(index++, *mKVCacheCLManager->key());
|
|
ret |= mKernel_qk->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
|
|
index++;
|
|
ret |= mKernel_qk->get().setArg(index++, mKvSeqlen);
|
|
ret |= mKernel_qk->get().setArg(index++, mKeyValueMaxlen);
|
|
mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0]));
|
|
mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1]));
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qk_decode");
|
|
}
|
|
{
|
|
// softmax
|
|
uint32_t index = 3;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
|
|
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
|
|
index++;
|
|
index++;
|
|
ret |= mKernel_softmax->get().setArg(index++, mKvSeqlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg softmax");
|
|
}
|
|
{
|
|
uint32_t index = 4;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, *mKVCacheCLManager->value());
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mPastKvSeqlen);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mKeyValueMaxlen);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg rearrange_v");
|
|
}
|
|
// qk * value
|
|
{
|
|
uint32_t index = 2;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qkv->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_qkv->get().setArg(index++, *mKVCacheCLManager->value());
|
|
index++;
|
|
ret |= mKernel_qkv->get().setArg(index++, mKvSeqlen);
|
|
ret |= mKernel_qkv->get().setArg(index++, mKeyValueMaxlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "reSetArg matmul_qkv_decode");
|
|
}
|
|
#ifndef ENABLE_OPENCL_TIME_PROFILER
|
|
}
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
int AttentionBufExecution::getLocalSize(int size, int maxGroupSize){
|
|
int local_size = 1;
|
|
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
|
|
local_size *= 2;
|
|
}
|
|
return local_size;
|
|
}
|
|
|
|
ErrorCode AttentionBufExecution::longPrefillResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
|
|
|
|
auto query = inputs[0];
|
|
auto key = inputs[1];
|
|
auto value = inputs[2];
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
auto shape = query->shape();
|
|
|
|
int batch = shape[0];
|
|
int seqlen = shape[1];
|
|
int numHead = shape[2];
|
|
int kvNumHead = key->shape()[2];
|
|
int headDim = shape[3];
|
|
int group_size = numHead / kvNumHead;
|
|
float scale = 1.0 / sqrt(headDim);
|
|
|
|
mAlignQ = 32;
|
|
mAlignKV = 32;
|
|
mAlignHDK = 4;
|
|
mAlignHDN = 32;
|
|
|
|
float useMemorySize = 1.0 * ROUND_UP(seqlen, mAlignQ) / 1024.0 * ROUND_UP(seqlen, mAlignKV) / 1024.0 * batch * numHead;
|
|
// elementSize larger than 32M
|
|
if(useMemorySize > 32.0) {
|
|
mQseqSplitNum = useMemorySize >= 256.0 ? 8 : ((useMemorySize < 128.0) ? 2 : 4);
|
|
}
|
|
|
|
mKernel_rearrange_vec.resize(1); mGwsRearrgVec.resize(1); mLwsRearrgVec.resize(1);
|
|
mKernel_mask_vec.resize(1); mGwsMaskVec.resize(1); mLwsMaskVec.resize(1);
|
|
mKernel_qk_vec.resize(mQseqSplitNum); mGwsQkVec.resize(mQseqSplitNum); mLwsQkVec.resize(mQseqSplitNum);
|
|
mKernel_softmax_vec.resize(mQseqSplitNum); mGwsSoftMaxVec.resize(mQseqSplitNum); mLwsSoftMaxVec.resize(mQseqSplitNum);
|
|
mKernel_trans_vec.resize(mQseqSplitNum); mGwsTransVec.resize(mQseqSplitNum); mLwsTransVec.resize(mQseqSplitNum);
|
|
mKernel_qkv_vec.resize(mQseqSplitNum); mGwsQkvVec.resize(mQseqSplitNum); mLwsQkvVec.resize(mQseqSplitNum);
|
|
mKernel_clip_vec.resize(1); mGwsClipVec.resize(1); mLwsClipVec.resize(1);
|
|
|
|
mTempQ.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(headDim, mAlignHDK) * batch * numHead}));
|
|
mTempK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignKV) * ROUND_UP(headDim, mAlignHDK) * batch * numHead}));
|
|
mTempV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignKV) * ROUND_UP(headDim, mAlignHDN) * batch * numHead}));
|
|
if(mHasMask) {
|
|
if(mIsAddMask) {
|
|
mTempMask.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch}));
|
|
} else {
|
|
mTempMask.reset(Tensor::createDevice<uint32_t>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch}));
|
|
}
|
|
}
|
|
mTempQK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch * numHead / mQseqSplitNum}));
|
|
mTempSoftMax.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(seqlen, mAlignKV) * batch * numHead / mQseqSplitNum}));
|
|
mTempQKV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, mAlignQ) * ROUND_UP(headDim, mAlignHDN) * batch * numHead}));
|
|
|
|
|
|
mOpenCLBackend->onAcquireBuffer(mTempQ.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC);
|
|
if(mHasMask) {
|
|
mOpenCLBackend->onAcquireBuffer(mTempMask.get(), Backend::DYNAMIC);
|
|
}
|
|
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempQKV.get(), Backend::DYNAMIC);
|
|
|
|
mOpenCLBackend->onReleaseBuffer(mTempQ.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC);
|
|
if(mHasMask) {
|
|
mOpenCLBackend->onReleaseBuffer(mTempMask.get(), Backend::DYNAMIC);
|
|
}
|
|
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempQKV.get(), Backend::DYNAMIC);
|
|
|
|
// query: [batch, seqLenQ, headNum, headDim] -> mTempQ: [batch*headNum, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenQ, mAlignQ)]
|
|
// key: [batch, seqLenKV/4, headNum/group, headDim, seqLenKV_4] -> mTempK: [batch*headNum/group, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenKV, mAlignKV)]
|
|
// value: [batch, seqLenKV/4, headNum/group, headDim, seqLenKV_4] -> mTempV: [batch*headNum/group, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(headDim, mAlignHDK]
|
|
// key & value -> pastKey & pastValue (copy)
|
|
int seq_idx = 0;
|
|
// rearrange qkv
|
|
{
|
|
std::set<std::string> buildOption;
|
|
if((headDim % 4) != 0){
|
|
buildOption.emplace("-DHEADDIM_LEAVE");
|
|
}
|
|
// generate cache for every option
|
|
{
|
|
auto option = buildOption;
|
|
auto kernel = runtime->buildKernel("attention_buf", "rearrange_qkv", option, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
}
|
|
{
|
|
auto option = buildOption;
|
|
option.emplace("-DSEQLEN_LEAVE");
|
|
auto kernel = runtime->buildKernel("attention_buf", "rearrange_qkv", option, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
}
|
|
if((seqlen % 4) != 0){
|
|
buildOption.emplace("-DSEQLEN_LEAVE");
|
|
}
|
|
if(mNeedKvCache) {
|
|
buildOption.emplace("-DSAVE_KV");
|
|
}
|
|
int seq_len_pack_q = ROUND_UP(seqlen, mAlignQ);
|
|
int seq_len_pack_kv = ROUND_UP(mKvSeqlen, mAlignKV);
|
|
|
|
int head_dim_pack_qk = ROUND_UP(headDim, mAlignHDK);
|
|
int head_dim_pack_v = ROUND_UP(headDim, mAlignHDN);
|
|
|
|
int tile[4] = {mAlignQ, mAlignKV, mAlignHDK, mAlignHDN};
|
|
int shape[4] = {seqlen, mKvSeqlen, numHead, headDim};
|
|
int param[4] = {group_size, batch, 0, 0};
|
|
mKernel_rearrange_vec[seq_idx] = runtime->buildKernel("attention_buf", "rearrange_qkv", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrange_vec[seq_idx]));
|
|
|
|
mGwsRearrgVec[seq_idx] = {static_cast<uint32_t>(ALIMAX(UP_DIV(seq_len_pack_q, 4), UP_DIV(seq_len_pack_kv, 4))), \
|
|
static_cast<uint32_t>(ALIMAX(UP_DIV(head_dim_pack_qk, 4), UP_DIV(head_dim_pack_v, 4))), \
|
|
static_cast<uint32_t>(batch*numHead)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mGwsRearrgVec[seq_idx][0]);
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mGwsRearrgVec[seq_idx][1]);
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mGwsRearrgVec[seq_idx][2]);
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(query));
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(key));
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(value));
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQ.get()));
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempK.get()));
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempV.get()));
|
|
if(mNeedKvCache) {
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, *mKVCacheCLManager->key());
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, *mKVCacheCLManager->value());
|
|
}
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, tile);
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, shape);
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, param);
|
|
ret |= mKernel_rearrange_vec[seq_idx]->get().setArg(index++, mKeyValueMaxlen);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_qkv");
|
|
mLwsRearrgVec[seq_idx] = localWS3DDefault(mGwsRearrgVec[seq_idx], maxWorkGroupSize, runtime, "rearrange_qkv", mKernel_rearrange_vec[seq_idx], mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGwsRearrgVec[seq_idx][0] = ROUND_UP(mGwsRearrgVec[seq_idx][0], std::max((uint32_t)1, mLwsRearrgVec[seq_idx][0]));
|
|
mGwsRearrgVec[seq_idx][1] = ROUND_UP(mGwsRearrgVec[seq_idx][1], std::max((uint32_t)1, mLwsRearrgVec[seq_idx][1]));
|
|
mGwsRearrgVec[seq_idx][2] = ROUND_UP(mGwsRearrgVec[seq_idx][2], std::max((uint32_t)1, mLwsRearrgVec[seq_idx][2]));
|
|
if(mNeedKvCache) {
|
|
mRgUpdateInfo.update_kernel_args.push_back({0, 9, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
|
|
mRgUpdateInfo.update_kernel_args.push_back({0, 10, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
|
|
}
|
|
mRgUpdateInfo.update_kernel_args.push_back({0, 14, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
mOpRecordUpdateInfo.emplace_back(&mRgUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], &mRgUpdateInfo);
|
|
}
|
|
|
|
// mask rearaange
|
|
if(mHasMask)
|
|
{
|
|
std::set<std::string> buildOption;
|
|
|
|
int seq_len_pack_q = ROUND_UP(seqlen, mAlignQ);
|
|
int seq_len_pack_kv = ROUND_UP(mKvSeqlen, mAlignKV);
|
|
int shape[4] = {seqlen, mKvSeqlen, mAlignQ, mAlignKV};
|
|
|
|
mKernel_mask_vec[seq_idx] = runtime->buildKernel("attention_buf", "rearrange_mask", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_mask_vec[seq_idx]));
|
|
|
|
mGwsMaskVec[seq_idx] = {static_cast<uint32_t>(UP_DIV(seq_len_pack_q, 4)), \
|
|
static_cast<uint32_t>(UP_DIV(seq_len_pack_kv, 4)), \
|
|
static_cast<uint32_t>(batch)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, mGwsMaskVec[seq_idx][0]);
|
|
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, mGwsMaskVec[seq_idx][1]);
|
|
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, mGwsMaskVec[seq_idx][2]);
|
|
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, openCLBuffer(inputs[3]));
|
|
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempMask.get()));
|
|
ret |= mKernel_mask_vec[seq_idx]->get().setArg(index++, shape);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_mask");
|
|
mLwsMaskVec[seq_idx] = localWS3DDefault(mGwsMaskVec[seq_idx], maxWorkGroupSize, runtime, "rearrange_mask", mKernel_mask_vec[seq_idx], mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGwsMaskVec[seq_idx][0] = ROUND_UP(mGwsMaskVec[seq_idx][0], std::max((uint32_t)1, mLwsMaskVec[seq_idx][0]));
|
|
mGwsMaskVec[seq_idx][1] = ROUND_UP(mGwsMaskVec[seq_idx][1], std::max((uint32_t)1, mLwsMaskVec[seq_idx][1]));
|
|
mGwsMaskVec[seq_idx][2] = ROUND_UP(mGwsMaskVec[seq_idx][2], std::max((uint32_t)1, mLwsMaskVec[seq_idx][2]));
|
|
mOpenCLBackend->recordKernel3d(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx]);
|
|
}
|
|
|
|
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
|
|
// qk matmul
|
|
{
|
|
// Q : [batch*headNum, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] -> [B, K, M]
|
|
// K : [batch*headNum/group, ROUND_UP(headDim, mAlignHDK), ROUND_UP(seqLenKV, mAlignKV)] -> [B, K, N]
|
|
// QV: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)] -> [B, M, N]
|
|
int loop = batch * numHead;
|
|
int e_pack = ROUND_UP(seqlen, mAlignQ);
|
|
int e_pack_piece = e_pack / mQseqSplitNum;
|
|
int h_pack = ROUND_UP(mKvSeqlen, mAlignKV);
|
|
int l_pack = ROUND_UP(headDim, mAlignHDK);
|
|
|
|
std::set<std::string> buildOptions;
|
|
|
|
int biasType = 0;
|
|
std::vector<cl::Buffer> bufferVec = {openCLBuffer(mTempQ.get()), openCLBuffer(mTempK.get()), openCLBuffer(mTempQK.get())};
|
|
if(mHasMask) {
|
|
bufferVec.emplace_back(openCLBuffer(mTempMask.get()));
|
|
}
|
|
if(mIsAddMask) {
|
|
biasType = 2;
|
|
} else if(mHasMask) {
|
|
biasType = 5;// int value mask
|
|
}
|
|
uint32_t layout = 14; // 10 means mix-precision, 4 means layout
|
|
auto param = getGemmParams({(uint32_t)e_pack_piece, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop, (uint32_t)(biasType + 10*(group_size-1))}, bufferVec, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel());
|
|
|
|
int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13];
|
|
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
|
|
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
|
|
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
|
|
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
|
|
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
|
|
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
|
|
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
|
|
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
|
|
buildOptions.emplace("-DSA=" + std::to_string(SA));
|
|
buildOptions.emplace("-DSB=" + std::to_string(SB));
|
|
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
|
|
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
|
|
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
|
|
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
|
|
if(layout >= 4) {
|
|
buildOptions.emplace("-DOUTPUTMN");
|
|
}
|
|
|
|
int tileM = MWG;
|
|
int tileN = NWG;
|
|
int localM = MDIMC;
|
|
int localN = NDIMC;
|
|
|
|
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
|
|
buildOptions.emplace("-DUSE_CL_MAD=1");
|
|
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
|
|
}
|
|
buildOptions.emplace("-DONLY_HAVE_ALPHA");
|
|
if(biasType >= 1) {
|
|
buildOptions.emplace("-DBIAS_TYPE=" + std::to_string(biasType));
|
|
}
|
|
|
|
buildOptions.emplace("-DPRECISION_COMPUTE=float -DCONVERT_PRECISION_COMPUTE=convert_float");
|
|
buildOptions.emplace("-DPRECISION_COMPUTE2=float2 -DCONVERT_PRECISION_COMPUTE2=convert_float2");
|
|
buildOptions.emplace("-DPRECISION_COMPUTE4=float4 -DCONVERT_PRECISION_COMPUTE4=convert_float4");
|
|
buildOptions.emplace("-DPRECISION_COMPUTE8=float8 -DCONVERT_PRECISION_COMPUTE8=convert_float8");
|
|
buildOptions.emplace("-DPRECISION_COMPUTE16=float16 -DCONVERT_PRECISION_COMPUTE16=convert_float16");
|
|
|
|
mKernel_qk_vec[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions, mOpenCLBackend->getPrecision());
|
|
|
|
int out_per_thread_m = tileM / localM;
|
|
int out_per_thread_n = tileN / localN;
|
|
|
|
mGwsQkVec[seq_idx] = {static_cast<uint32_t>(e_pack_piece/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)};
|
|
mLwsQkVec[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1};
|
|
|
|
float alpha = scale;
|
|
float beta = 0.0f;
|
|
int batch_offset_a = e_pack * l_pack;
|
|
int batch_offset_b = h_pack * l_pack;
|
|
int batch_offset_c = e_pack_piece * h_pack;
|
|
|
|
int batch_offset[4] = {batch_offset_a, batch_offset_b, batch_offset_c, 0};
|
|
int base_ptr_offset[4] = {e_pack_piece * seq_idx, 0, 0, batch_offset_c * seq_idx};
|
|
int stride[4] = {e_pack, h_pack, h_pack, h_pack};
|
|
int group[4] = {1, group_size, 1, loop};
|
|
|
|
int idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack_piece));
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack));
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack));
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, alpha);
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, beta);
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQ.get()));
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempK.get()));
|
|
if(mHasMask) {
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempMask.get()));
|
|
}
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQK.get()));
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, batch_offset);
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, base_ptr_offset);
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, stride);
|
|
ret |= mKernel_qk_vec[seq_idx]->get().setArg(idx++, group);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qk Kernel");
|
|
mOpenCLBackend->recordKernel3d(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx]);
|
|
}
|
|
|
|
// softmax
|
|
{
|
|
// QV: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)]
|
|
// Sotmax: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)]
|
|
// axis : 2 (last dim)
|
|
int softmaxShape[4];
|
|
softmaxShape[0] = batch*numHead;
|
|
softmaxShape[1] = ROUND_UP(seqlen, mAlignQ) / mQseqSplitNum;
|
|
softmaxShape[2] = ROUND_UP(mKvSeqlen, mAlignKV);
|
|
|
|
auto MaxLocalSize = std::min(std::min(runtime->getMaxWorkItemSizes()[0], mMaxWorkGroupSize), static_cast<uint32_t>(256));
|
|
int localSize = 64;
|
|
|
|
std::set<std::string> buildOption;
|
|
buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize));
|
|
|
|
mKernel_softmax_vec[seq_idx] = runtime->buildKernel("self_attention_buf", "softmax_inside", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
mGwsSoftMaxVec[seq_idx] = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(softmaxShape[1]), static_cast<uint32_t>(softmaxShape[0])};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mGwsSoftMaxVec[seq_idx][0]);
|
|
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mGwsSoftMaxVec[seq_idx][1]);
|
|
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mGwsSoftMaxVec[seq_idx][2]);
|
|
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQK.get()));
|
|
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, mKvSeqlen);
|
|
ret |= mKernel_softmax_vec[seq_idx]->get().setArg(index++, softmaxShape);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg Attention softmax");
|
|
|
|
mLwsSoftMaxVec[seq_idx] = {static_cast<uint32_t>(localSize), 1, 1};
|
|
mOpenCLBackend->recordKernel3d(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx]);
|
|
}
|
|
{
|
|
// Sotmax: [Batch * numHead, ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum, ROUND_UP(seqLenKV, mAlignKV)]
|
|
// Trans: [Batch * numHead, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum]
|
|
int loop = batch * numHead;
|
|
int transDimW = ROUND_UP(seqlen, mAlignQ) / mQseqSplitNum;
|
|
int transDimH = ROUND_UP(mKvSeqlen, mAlignKV);
|
|
|
|
std::set<std::string> buildOptions;
|
|
mKernel_trans_vec[seq_idx] = runtime->buildKernel("self_attention_buf", "trans_3d_buf", buildOptions, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mKernel_trans_vec[seq_idx]));
|
|
|
|
mGwsTransVec[seq_idx] = {(uint32_t)transDimW/8, (uint32_t)transDimH/8, (uint32_t)(loop)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, mGwsTransVec[seq_idx][0]);
|
|
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, mGwsTransVec[seq_idx][1]);
|
|
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, mGwsTransVec[seq_idx][2]);
|
|
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQK.get()));
|
|
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, loop);
|
|
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, transDimW);
|
|
ret |= mKernel_trans_vec[seq_idx]->get().setArg(index++, transDimH);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg Attention transpose");
|
|
mLwsTransVec[seq_idx] = localWS3DDefault(mGwsTransVec[seq_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), "trans_3d_buf", mKernel_trans_vec[seq_idx], mOpenCLBackend->getCLTuneLevel(), "self_attention_buf").first;
|
|
|
|
mGwsTransVec[seq_idx][0] = ROUND_UP(mGwsTransVec[seq_idx][0], std::max((uint32_t)1, mLwsTransVec[seq_idx][0]));
|
|
mGwsTransVec[seq_idx][1] = ROUND_UP(mGwsTransVec[seq_idx][1], std::max((uint32_t)1, mLwsTransVec[seq_idx][1]));
|
|
mGwsTransVec[seq_idx][2] = ROUND_UP(mGwsTransVec[seq_idx][2], std::max((uint32_t)1, mLwsTransVec[seq_idx][2]));
|
|
|
|
mOpenCLBackend->recordKernel3d(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx]);
|
|
}
|
|
|
|
// qk * value
|
|
{
|
|
// Trans: [Batch * numHead, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] -> [B, K, M]
|
|
// V : [Batch * numHead / group, ROUND_UP(seqLenKV, mAlignKV), ROUND_UP(headDim, mAlignHDN)] -> [B, K, N]
|
|
// QKV : [Batch * numHead, ROUND_UP(headDim, mAlignHDN), ROUND_UP(seqLenQ, mAlignQ) / mQseqSplitNum] -> [B, N, M]
|
|
|
|
int loop = batch * numHead;
|
|
int e_pack = ROUND_UP(seqlen, mAlignQ);
|
|
int e_pack_piece = e_pack / mQseqSplitNum;
|
|
int l_pack = ROUND_UP(mKvSeqlen, mAlignKV);
|
|
int h_pack = ROUND_UP(headDim, mAlignHDN);
|
|
|
|
std::set<std::string> buildOptions;
|
|
|
|
uint32_t layout = 0;
|
|
auto param = getGemmParams({(uint32_t)e_pack_piece, (uint32_t)h_pack, (uint32_t)l_pack, layout, (uint32_t)loop, (uint32_t)0}, {openCLBuffer(mTempQK.get()), openCLBuffer(mTempV.get()), openCLBuffer(mTempQKV.get())}, mOpenCLBackend->getOpenCLRuntime(), mOpenCLBackend->getPrecision(), mOpenCLBackend->getCLTuneLevel());
|
|
|
|
int KWG=param[0], KWI=param[1], MDIMA=param[2], MDIMC=param[3], MWG=param[4], NDIMB=param[5], NDIMC=param[6], NWG=param[7], SA=param[8], SB=param[9], STRM=param[10], STRN=param[11], VWM=param[12], VWN=param[13];
|
|
buildOptions.emplace("-DKWG=" + std::to_string(KWG));
|
|
buildOptions.emplace("-DKWI=" + std::to_string(KWI));
|
|
buildOptions.emplace("-DMDIMA=" + std::to_string(MDIMA));
|
|
buildOptions.emplace("-DMDIMC=" + std::to_string(MDIMC));
|
|
buildOptions.emplace("-DMWG=" + std::to_string(MWG));
|
|
buildOptions.emplace("-DNDIMB=" + std::to_string(NDIMB));
|
|
buildOptions.emplace("-DNDIMC=" + std::to_string(NDIMC));
|
|
buildOptions.emplace("-DNWG=" + std::to_string(NWG));
|
|
buildOptions.emplace("-DSA=" + std::to_string(SA));
|
|
buildOptions.emplace("-DSB=" + std::to_string(SB));
|
|
buildOptions.emplace("-DSTRM=" + std::to_string(STRM));
|
|
buildOptions.emplace("-DSTRN=" + std::to_string(STRN));
|
|
buildOptions.emplace("-DVWM=" + std::to_string(VWM));
|
|
buildOptions.emplace("-DVWN=" + std::to_string(VWN));
|
|
if(layout >= 4) {
|
|
buildOptions.emplace("-DOUTPUTMN");
|
|
}
|
|
|
|
int tileM = MWG;
|
|
int tileN = NWG;
|
|
int localM = MDIMC;
|
|
int localN = NDIMC;
|
|
|
|
if(mOpenCLBackend->getOpenCLRuntime()->getGpuType() == GpuType::ADRENO) {
|
|
buildOptions.emplace("-DUSE_CL_MAD=1");
|
|
buildOptions.emplace("-DRELAX_WORKGROUP_SIZE=1");
|
|
}
|
|
|
|
mKernel_qkv_vec[seq_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("matmul_params_buf", "XgemmBatched", buildOptions, mOpenCLBackend->getPrecision());
|
|
|
|
int out_per_thread_m = tileM / localM;
|
|
int out_per_thread_n = tileN / localN;
|
|
|
|
mGwsQkvVec[seq_idx] = {static_cast<uint32_t>(e_pack_piece/out_per_thread_m), static_cast<uint32_t>(h_pack/out_per_thread_n), static_cast<uint32_t>(loop)};
|
|
mLwsQkvVec[seq_idx] = {static_cast<uint32_t>(localM), static_cast<uint32_t>(localN), 1};
|
|
|
|
float alpha = 1.0f;
|
|
float beta = 0.0f;
|
|
int batch_offset_a = e_pack_piece * l_pack;
|
|
int batch_offset_b = h_pack * l_pack;
|
|
int batch_offset_c = e_pack * h_pack;
|
|
int batch_offset[4] = {batch_offset_a, batch_offset_b, batch_offset_c, 0};
|
|
int base_ptr_offset[4] = {0, 0, e_pack_piece * seq_idx, 0};
|
|
int stride[4] = {e_pack_piece, h_pack, e_pack, h_pack};
|
|
int group[4] = {1, group_size, 1, loop};
|
|
|
|
int idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, static_cast<int>(e_pack_piece));
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, static_cast<int>(h_pack));
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, static_cast<int>(l_pack));
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, alpha);
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, beta);
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQK.get()));
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempV.get()));
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, openCLBuffer(mTempQKV.get()));
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, batch_offset);
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, base_ptr_offset);
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, stride);
|
|
ret |= mKernel_qkv_vec[seq_idx]->get().setArg(idx++, group);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg Self-Attention batchmatmul qkv Kernel");
|
|
mOpenCLBackend->recordKernel3d(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx]);
|
|
}
|
|
}
|
|
|
|
seq_idx = 0;
|
|
// transpose to output
|
|
{
|
|
// QKV : [Batch * numHead, ROUND_UP(headDim, mAlignHDN), ROUND_UP(seqLenQ, mAlignQ)] -> [B, N, M]
|
|
// output: [batch, seqLenQ/4, headNum, headDim, seqLenQ_4]
|
|
std::set<std::string> buildOption;
|
|
|
|
mKernel_clip_vec[seq_idx] = runtime->buildKernel("attention_buf", "qkv_transpose_output", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_clip_vec[seq_idx]));
|
|
|
|
mGwsClipVec[seq_idx] = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(UP_DIV(headDim, 4)), static_cast<uint32_t>(batch*numHead)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mGwsClipVec[seq_idx][0]);
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mGwsClipVec[seq_idx][1]);
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mGwsClipVec[seq_idx][2]);
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, openCLBuffer(mTempQKV.get()));
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, openCLBuffer(outputs[0]));
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mAlignQ);
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, mAlignHDN);
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, seqlen);
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, numHead);
|
|
ret |= mKernel_clip_vec[seq_idx]->get().setArg(index++, headDim);
|
|
|
|
mLwsClipVec[seq_idx] = localWS3DDefault(mGwsClipVec[seq_idx], maxWorkGroupSize, runtime, "qkv_transpose_output", mKernel_clip_vec[seq_idx], mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGwsClipVec[seq_idx][0] = ROUND_UP(mGwsClipVec[seq_idx][0], std::max((uint32_t)1, mLwsClipVec[seq_idx][0]));
|
|
mGwsClipVec[seq_idx][1] = ROUND_UP(mGwsClipVec[seq_idx][1], std::max((uint32_t)1, mLwsClipVec[seq_idx][1]));
|
|
mGwsClipVec[seq_idx][2] = ROUND_UP(mGwsClipVec[seq_idx][2], std::max((uint32_t)1, mLwsClipVec[seq_idx][2]));
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg qkv_transpose_output");
|
|
mOpenCLBackend->recordKernel3d(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx]);
|
|
}
|
|
mOpenCLBackend->endRecord(mRecording);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode AttentionBufExecution::prefillResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
|
|
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
auto query = inputs[0];
|
|
auto key = inputs[1];
|
|
auto value = inputs[2];
|
|
auto shape = query->shape();
|
|
|
|
int batch = shape[0];
|
|
int seqlen = shape[1];
|
|
int numHead = shape[2];
|
|
int kvNumHead = key->shape()[2];
|
|
int headDim = shape[3];
|
|
int groupSize = numHead / kvNumHead;
|
|
float scale = 1.0 / sqrt(headDim);
|
|
|
|
int maskKvlen = mKvSeqlen;
|
|
int maskQlen = seqlen;
|
|
|
|
if(mHasMask) {
|
|
auto mask = inputs[3];
|
|
auto mask_shape = mask->shape();
|
|
maskQlen = mask_shape[2];
|
|
maskKvlen = mask_shape[3];
|
|
if(mIsAddMask) {
|
|
mTempMask.reset(Tensor::createDevice<float>({ROUND_UP(maskQlen, 4) * ROUND_UP(maskKvlen, 4) * batch}));
|
|
} else {
|
|
mTempMask.reset(Tensor::createDevice<uint32_t>({ROUND_UP(maskQlen, 4) * ROUND_UP(maskKvlen, 4) * batch}));
|
|
}
|
|
}
|
|
|
|
mTempQ.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
|
|
mTempQK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * mKvSeqlen * numHead * batch}));
|
|
mTempSoftMax.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * mKvSeqlen * numHead * batch}));
|
|
|
|
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onAcquireBuffer(mTempQ.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
if(mHasMask){
|
|
mOpenCLBackend->onAcquireBuffer(mTempMask.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
}
|
|
|
|
cl::Buffer keyBuffer, valueBuffer;
|
|
if(mNeedKvCache) {
|
|
keyBuffer = *mKVCacheCLManager->key();
|
|
valueBuffer = *mKVCacheCLManager->value();
|
|
} else {
|
|
mTempK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
|
|
mTempV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
|
|
mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC);
|
|
keyBuffer = openCLBuffer(mTempK.get());
|
|
valueBuffer = openCLBuffer(mTempV.get());
|
|
}
|
|
mOpenCLBackend->onReleaseBuffer(mTempQ.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
if(mHasMask){
|
|
mOpenCLBackend->onReleaseBuffer(mTempMask.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
}
|
|
|
|
{
|
|
// rearrange query
|
|
std::set<std::string> buildOption;
|
|
|
|
mKernel_rearrangeQ = runtime->buildKernel("attention_buf", "rearrange_q", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeQ));
|
|
|
|
mGlobalWorkSizeRearrgQ = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), \
|
|
static_cast<uint32_t>(UP_DIV(headDim, 4)), \
|
|
static_cast<uint32_t>(numHead*batch)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrangeQ->get().setArg(index++, mGlobalWorkSizeRearrgQ[0]);
|
|
ret |= mKernel_rearrangeQ->get().setArg(index++, mGlobalWorkSizeRearrgQ[1]);
|
|
ret |= mKernel_rearrangeQ->get().setArg(index++, mGlobalWorkSizeRearrgQ[2]);
|
|
ret |= mKernel_rearrangeQ->get().setArg(index++, openCLBuffer(query));
|
|
ret |= mKernel_rearrangeQ->get().setArg(index++, openCLDeferBuffer(mTempQ.get()));
|
|
ret |= mKernel_rearrangeQ->get().setArg(index++, seqlen);
|
|
ret |= mKernel_rearrangeQ->get().setArg(index++, headDim);
|
|
ret |= mKernel_rearrangeQ->get().setArg(index++, numHead);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_q");
|
|
mLocalWorkSizeRearrgQ = localWS3DDefault(mGlobalWorkSizeRearrgQ, maxWorkGroupSize, runtime, "rearrange_q", mKernel_rearrangeQ, mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGlobalWorkSizeRearrgQ[0] = ROUND_UP(mGlobalWorkSizeRearrgQ[0], std::max((uint32_t)1, mLocalWorkSizeRearrgQ[0]));
|
|
mGlobalWorkSizeRearrgQ[1] = ROUND_UP(mGlobalWorkSizeRearrgQ[1], std::max((uint32_t)1, mLocalWorkSizeRearrgQ[1]));
|
|
mGlobalWorkSizeRearrgQ[2] = ROUND_UP(mGlobalWorkSizeRearrgQ[2], std::max((uint32_t)1, mLocalWorkSizeRearrgQ[2]));
|
|
mRgQUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &openCLDeferBuffer(mTempQ.get())()});
|
|
mOpRecordUpdateInfo.emplace_back(&mRgQUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ, &mRgQUpdateInfo);
|
|
}
|
|
{
|
|
// rearrange key
|
|
std::set<std::string> buildOption;
|
|
|
|
buildOption.emplace("-DOPENCL_PREFILL_ATTENTION");
|
|
mKernel_rearrange = runtime->buildKernel("attention_buf", "rearrange_k", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrange));
|
|
|
|
mGlobalWorkSizeRearrg = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), \
|
|
static_cast<uint32_t>(UP_DIV(headDim, 4)), \
|
|
static_cast<uint32_t>(kvNumHead * batch)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[0]);
|
|
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[1]);
|
|
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[2]);
|
|
ret |= mKernel_rearrange->get().setArg(index++, openCLBuffer(key));
|
|
ret |= mKernel_rearrange->get().setArg(index++, keyBuffer);
|
|
ret |= mKernel_rearrange->get().setArg(index++, mPastKvSeqlen);
|
|
ret |= mKernel_rearrange->get().setArg(index++, mKeyValueMaxlen);
|
|
ret |= mKernel_rearrange->get().setArg(index++, seqlen);
|
|
ret |= mKernel_rearrange->get().setArg(index++, kvNumHead);
|
|
ret |= mKernel_rearrange->get().setArg(index++, numHead);
|
|
ret |= mKernel_rearrange->get().setArg(index++, headDim);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_k");
|
|
mLocalWorkSizeRearrg = localWS3DDefault(mGlobalWorkSizeRearrg, maxWorkGroupSize, runtime, "rearrange_k", mKernel_rearrange, mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGlobalWorkSizeRearrg[0] = ROUND_UP(mGlobalWorkSizeRearrg[0], std::max((uint32_t)1, mLocalWorkSizeRearrg[0]));
|
|
mGlobalWorkSizeRearrg[1] = ROUND_UP(mGlobalWorkSizeRearrg[1], std::max((uint32_t)1, mLocalWorkSizeRearrg[1]));
|
|
mGlobalWorkSizeRearrg[2] = ROUND_UP(mGlobalWorkSizeRearrg[2], std::max((uint32_t)1, mLocalWorkSizeRearrg[2]));
|
|
if(mNeedKvCache) {
|
|
mRgUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
|
|
}
|
|
mRgUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen});
|
|
mRgUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
mOpRecordUpdateInfo.emplace_back(&mRgUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, &mRgUpdateInfo);
|
|
}
|
|
if (mHasMask){
|
|
std::set<std::string> buildOption;
|
|
if(mIsAddMask){
|
|
buildOption.emplace("-DADD_MASK");
|
|
} else if(mHasMask) {
|
|
buildOption.emplace("-DSET_MASK");
|
|
}
|
|
mKernel_rearrangeMask = runtime->buildKernel("attention_buf", "rearrange_mask_shortprefill", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
mGlobalWorkSizeRearrgM = {static_cast<uint32_t>(UP_DIV(maskQlen, 4)), static_cast<uint32_t>(UP_DIV(maskKvlen, 4)), static_cast<uint32_t>(batch)};
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeMask));
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrangeMask->get().setArg(index++, mGlobalWorkSizeRearrgM[0]);
|
|
ret |= mKernel_rearrangeMask->get().setArg(index++, mGlobalWorkSizeRearrgM[1]);
|
|
ret |= mKernel_rearrangeMask->get().setArg(index++, mGlobalWorkSizeRearrgM[2]);
|
|
ret |= mKernel_rearrangeMask->get().setArg(index++, openCLBuffer(inputs[3]));
|
|
ret |= mKernel_rearrangeMask->get().setArg(index++, openCLDeferBuffer(mTempMask.get()));
|
|
ret |= mKernel_rearrangeMask->get().setArg(index++, maskQlen);
|
|
ret |= mKernel_rearrangeMask->get().setArg(index++, maskKvlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_mask_shortprefill");
|
|
mLocalWorkSizeRearrgM = localWS3DDefault(mGlobalWorkSizeRearrgM, maxWorkGroupSize, runtime, "rearrange_mask_shortprefill", mKernel_rearrangeMask, mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGlobalWorkSizeRearrgM[0] = ROUND_UP(mGlobalWorkSizeRearrgM[0], std::max((uint32_t)1, mLocalWorkSizeRearrgM[0]));
|
|
mGlobalWorkSizeRearrgM[1] = ROUND_UP(mGlobalWorkSizeRearrgM[1], std::max((uint32_t)1, mLocalWorkSizeRearrgM[1]));
|
|
mGlobalWorkSizeRearrgM[2] = ROUND_UP(mGlobalWorkSizeRearrgM[2], std::max((uint32_t)1, mLocalWorkSizeRearrgM[2]));
|
|
mRgMUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &openCLDeferBuffer(mTempMask.get())()});
|
|
mOpRecordUpdateInfo.emplace_back(&mRgMUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_rearrangeMask, mGlobalWorkSizeRearrgM, mLocalWorkSizeRearrgM, &mRgMUpdateInfo);
|
|
}
|
|
{
|
|
// matmul qk
|
|
std::set<std::string> buildOption;
|
|
if(mIsAddMask){
|
|
buildOption.emplace("-DADD_MASK");
|
|
} else if(mHasMask) {
|
|
buildOption.emplace("-DSET_MASK");
|
|
}
|
|
buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(groupSize));
|
|
mKernel_qk = runtime->buildKernel("attention_buf", "matmul_qk_div_mask_prefill", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
mGlobalWorkSizeQk = {static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(UP_DIV(mKvSeqlen, 4)), static_cast<uint32_t>(numHead*batch)};
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_qk));
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[0]);
|
|
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[1]);
|
|
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[2]);
|
|
ret |= mKernel_qk->get().setArg(index++, openCLDeferBuffer(mTempQ.get()));
|
|
ret |= mKernel_qk->get().setArg(index++, keyBuffer);
|
|
if(mHasMask) {
|
|
ret |= mKernel_qk->get().setArg(index++, openCLDeferBuffer(mTempMask.get()));
|
|
}
|
|
ret |= mKernel_qk->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
|
|
ret |= mKernel_qk->get().setArg(index++, scale);
|
|
ret |= mKernel_qk->get().setArg(index++, seqlen);
|
|
ret |= mKernel_qk->get().setArg(index++, maskKvlen);
|
|
ret |= mKernel_qk->get().setArg(index++, mKvSeqlen);
|
|
ret |= mKernel_qk->get().setArg(index++, mKeyValueMaxlen);
|
|
ret |= mKernel_qk->get().setArg(index++, numHead);
|
|
ret |= mKernel_qk->get().setArg(index++, headDim);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qk_div_mask_prefill");
|
|
|
|
mLocalWorkSizeQk = localWS3DDefault(mGlobalWorkSizeQk, maxWorkGroupSize, runtime, "matmul_qk_div_mask_prefill", mKernel_qk, mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0]));
|
|
mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1]));
|
|
mGlobalWorkSizeQk[2] = ROUND_UP(mGlobalWorkSizeQk[2], std::max((uint32_t)1, mLocalWorkSizeQk[2]));
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 1, sizeof(mGlobalWorkSizeQk0), &mGlobalWorkSizeQk0});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &openCLDeferBuffer(mTempQ.get())()});
|
|
if(mNeedKvCache) {
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
|
|
}
|
|
if(mHasMask){
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(cl_mem), &openCLDeferBuffer(mTempMask.get())()});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(cl_mem), &openCLDeferBuffer(mTempQK.get())()});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 10, sizeof(mKvSeqlen), &mKvSeqlen});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 11, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
}else{
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(cl_mem), &openCLDeferBuffer(mTempQK.get())()});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 9, sizeof(mKvSeqlen), &mKvSeqlen});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 10, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
}
|
|
mQkPrefillGlobal_size[0] = mGlobalWorkSizeQk[0];
|
|
mQkPrefillGlobal_size[1] = mGlobalWorkSizeQk[1];
|
|
mQkPrefillGlobal_size[2] = mGlobalWorkSizeQk[2];
|
|
mQkUpdateInfo.update_global_size.push_back({0, mQkPrefillGlobal_size});
|
|
mOpRecordUpdateInfo.emplace_back(&mQkUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, &mQkUpdateInfo);
|
|
}
|
|
{
|
|
// softmax
|
|
int inside = ROUND_UP(seqlen, 4);
|
|
int outside = numHead * batch;
|
|
int localSize = 64;
|
|
|
|
std::set<std::string> buildOption;
|
|
buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize));
|
|
mKernel_softmax = runtime->buildKernel("softmax_buf", "softmax_v4_buf", buildOption, mOpenCLBackend->getPrecision());
|
|
mGlobalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(UP_DIV(inside, 4)), static_cast<uint32_t>(outside)};
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_softmax));
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[0]);
|
|
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[1]);
|
|
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[2]);
|
|
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
|
|
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_softmax->get().setArg(index++, inside);
|
|
ret |= mKernel_softmax->get().setArg(index++, outside);
|
|
ret |= mKernel_softmax->get().setArg(index++, mKvSeqlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg softmax");
|
|
|
|
mLocalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), 1, 1};
|
|
if(localSize == 1){
|
|
mLocalWorkSizeSoftMax = localWS3DDefault(mGlobalWorkSizeSoftMax, maxWorkGroupSize, runtime, "softmax", mKernel_softmax, mOpenCLBackend->getCLTuneLevel(), "softmax_buf").first;
|
|
}
|
|
mGlobalWorkSizeSoftMax[0] = ROUND_UP(mGlobalWorkSizeSoftMax[0], std::max((uint32_t)1, mLocalWorkSizeSoftMax[0]));
|
|
mGlobalWorkSizeSoftMax[1] = ROUND_UP(mGlobalWorkSizeSoftMax[1], std::max((uint32_t)1, mLocalWorkSizeSoftMax[1]));
|
|
mGlobalWorkSizeSoftMax[2] = ROUND_UP(mGlobalWorkSizeSoftMax[2], std::max((uint32_t)1, mLocalWorkSizeSoftMax[2]));
|
|
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &openCLDeferBuffer(mTempQK.get())()});
|
|
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &openCLDeferBuffer(mTempSoftMax.get())()});
|
|
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKvSeqlen), &mKvSeqlen});
|
|
mOpRecordUpdateInfo.emplace_back(&mSoftMaxUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, &mSoftMaxUpdateInfo);
|
|
}
|
|
{
|
|
// rearrange value
|
|
std::set<std::string> buildOption;
|
|
|
|
buildOption.emplace("-DOPENCL_PREFILL_ATTENTION");
|
|
mKernel_rearrangeV = runtime->buildKernel("attention_buf", "rearrange_v", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeV));
|
|
|
|
mGlobalWorkSizeRearrgV = {static_cast<uint32_t>(UP_DIV(headDim, 4)), \
|
|
static_cast<uint32_t>(UP_DIV(seqlen, 4)), \
|
|
static_cast<uint32_t>(kvNumHead * batch)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[0]);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[1]);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[2]);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, openCLBuffer(value));
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, valueBuffer);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mPastKvSeqlen);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mKeyValueMaxlen);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, seqlen);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, kvNumHead);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, headDim);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_v");
|
|
mLocalWorkSizeRearrgV = localWS3DDefault(mGlobalWorkSizeRearrgV, maxWorkGroupSize, runtime, "rearrange_v", mKernel_rearrangeV, mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGlobalWorkSizeRearrgV[0] = ROUND_UP(mGlobalWorkSizeRearrgV[0], std::max((uint32_t)1, mLocalWorkSizeRearrgV[0]));
|
|
mGlobalWorkSizeRearrgV[1] = ROUND_UP(mGlobalWorkSizeRearrgV[1], std::max((uint32_t)1, mLocalWorkSizeRearrgV[1]));
|
|
mGlobalWorkSizeRearrgV[2] = ROUND_UP(mGlobalWorkSizeRearrgV[2], std::max((uint32_t)1, mLocalWorkSizeRearrgV[2]));
|
|
if(mNeedKvCache) {
|
|
mRgVUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
|
|
}
|
|
mRgVUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen});
|
|
mRgVUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
mOpRecordUpdateInfo.emplace_back(&mRgVUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, &mRgVUpdateInfo);
|
|
}
|
|
// qk * value
|
|
{
|
|
std::set<std::string> buildOption;
|
|
buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(groupSize));
|
|
mKernel_qkv = runtime->buildKernel("attention_buf", "matmul_qkv_prefill", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_qkv));
|
|
mGlobalWorkSizeQkv = {static_cast<uint32_t>(UP_DIV(headDim, 8)), static_cast<uint32_t>(UP_DIV(seqlen, 4)), static_cast<uint32_t>(numHead*batch)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[0]);
|
|
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[1]);
|
|
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[2]);
|
|
ret |= mKernel_qkv->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_qkv->get().setArg(index++, valueBuffer);
|
|
ret |= mKernel_qkv->get().setArg(index++, openCLBuffer(outputs[0]));
|
|
ret |= mKernel_qkv->get().setArg(index++, seqlen);
|
|
ret |= mKernel_qkv->get().setArg(index++, mKvSeqlen);
|
|
ret |= mKernel_qkv->get().setArg(index++, mKeyValueMaxlen);
|
|
ret |= mKernel_qkv->get().setArg(index++, numHead);
|
|
ret |= mKernel_qkv->get().setArg(index++, kvNumHead);
|
|
ret |= mKernel_qkv->get().setArg(index++, headDim);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qkv_prefill");
|
|
|
|
mLocalWorkSizeQkv = localWS3DDefault(mGlobalWorkSizeQkv, maxWorkGroupSize, runtime, "matmul_qkv_prefill", mKernel_qkv, mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGlobalWorkSizeQkv[0] = ROUND_UP(mGlobalWorkSizeQkv[0], std::max((uint32_t)1, mLocalWorkSizeQkv[0]));
|
|
mGlobalWorkSizeQkv[1] = ROUND_UP(mGlobalWorkSizeQkv[1], std::max((uint32_t)1, mLocalWorkSizeQkv[1]));
|
|
mGlobalWorkSizeQkv[2] = ROUND_UP(mGlobalWorkSizeQkv[2], std::max((uint32_t)1, mLocalWorkSizeQkv[2]));
|
|
mQkvUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &openCLDeferBuffer(mTempSoftMax.get())()});
|
|
if(mNeedKvCache) {
|
|
mQkvUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
|
|
}
|
|
mQkvUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKvSeqlen), &mKvSeqlen});
|
|
mQkvUpdateInfo.update_kernel_args.push_back({0, 8, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
mOpRecordUpdateInfo.emplace_back(&mQkvUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, &mQkvUpdateInfo);
|
|
}
|
|
mOpenCLBackend->endRecord(mRecording);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode AttentionBufExecution::decodeResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
|
|
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
auto query = inputs[0];
|
|
auto key = inputs[1];
|
|
auto value = inputs[2];
|
|
auto shape = query->shape();
|
|
|
|
int batch = shape[0];
|
|
int seqlen = shape[1];
|
|
int numHead = shape[2];
|
|
int kvNumHead = key->shape()[2];
|
|
int headDim = shape[3];
|
|
int group_size = numHead / kvNumHead;
|
|
float scale = 1.0 / sqrt(headDim);
|
|
|
|
|
|
cl::Buffer keyBuffer, valueBuffer;
|
|
if(mNeedKvCache) {
|
|
keyBuffer = *mKVCacheCLManager->key();
|
|
valueBuffer = *mKVCacheCLManager->value();
|
|
} else {
|
|
mTempK.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
|
|
mTempV.reset(Tensor::createDevice<float>({ROUND_UP(seqlen, 4) * ROUND_UP(headDim, 4) * numHead * batch}));
|
|
mOpenCLBackend->onAcquireBuffer(mTempK.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onAcquireBuffer(mTempV.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempV.get(), Backend::DYNAMIC);
|
|
mOpenCLBackend->onReleaseBuffer(mTempK.get(), Backend::DYNAMIC);
|
|
keyBuffer = openCLBuffer(mTempK.get());
|
|
valueBuffer = openCLBuffer(mTempV.get());
|
|
}
|
|
|
|
mTempQK.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead}));
|
|
mTempSoftMax.reset(Tensor::createDevice<float>({mDecodeTmpMaxlen * numHead}));
|
|
mOpenCLBackend->onAcquireBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onAcquireBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempQK.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
mOpenCLBackend->onReleaseBuffer(mTempSoftMax.get(), Backend::DYNAMIC_IN_EXECUTION);
|
|
{
|
|
// rearrange key
|
|
std::set<std::string> buildOption;
|
|
|
|
mKernel_rearrange = runtime->buildKernel("attention_buf", "rearrange_k", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrange));
|
|
|
|
mGlobalWorkSizeRearrg = {static_cast<uint32_t>(1), \
|
|
static_cast<uint32_t>(UP_DIV(headDim, 4)), \
|
|
static_cast<uint32_t>(kvNumHead * batch)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[0]);
|
|
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[1]);
|
|
ret |= mKernel_rearrange->get().setArg(index++, mGlobalWorkSizeRearrg[2]);
|
|
ret |= mKernel_rearrange->get().setArg(index++, openCLBuffer(key));
|
|
ret |= mKernel_rearrange->get().setArg(index++, keyBuffer);
|
|
ret |= mKernel_rearrange->get().setArg(index++, mPastKvSeqlen);
|
|
ret |= mKernel_rearrange->get().setArg(index++, mKeyValueMaxlen);
|
|
ret |= mKernel_rearrange->get().setArg(index++, seqlen);
|
|
ret |= mKernel_rearrange->get().setArg(index++, kvNumHead);
|
|
ret |= mKernel_rearrange->get().setArg(index++, numHead);
|
|
ret |= mKernel_rearrange->get().setArg(index++, headDim);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_k");
|
|
mLocalWorkSizeRearrg = localWS3DDefault(mGlobalWorkSizeRearrg, maxWorkGroupSize, runtime, "rearrange_k", mKernel_rearrange, mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGlobalWorkSizeRearrg[0] = ROUND_UP(mGlobalWorkSizeRearrg[0], std::max((uint32_t)1, mLocalWorkSizeRearrg[0]));
|
|
mGlobalWorkSizeRearrg[1] = ROUND_UP(mGlobalWorkSizeRearrg[1], std::max((uint32_t)1, mLocalWorkSizeRearrg[1]));
|
|
mGlobalWorkSizeRearrg[2] = ROUND_UP(mGlobalWorkSizeRearrg[2], std::max((uint32_t)1, mLocalWorkSizeRearrg[2]));
|
|
if(mNeedKvCache) {
|
|
mRgUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
|
|
mRgUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen});
|
|
mRgUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
mOpRecordUpdateInfo.emplace_back(&mRgUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, &mRgUpdateInfo);
|
|
} else {
|
|
mOpenCLBackend->recordKernel3d(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg);
|
|
}
|
|
}
|
|
{
|
|
// matmul qk
|
|
std::set<std::string> buildOption;
|
|
buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(group_size));
|
|
mKernel_qk = runtime->buildKernel("attention_buf", "matmul_qk_decode", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
mGlobalWorkSizeQk = {static_cast<uint32_t>(UP_DIV(mKvSeqlen, 4)), static_cast<uint32_t>(numHead)};
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_qk));
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[0]);
|
|
ret |= mKernel_qk->get().setArg(index++, mGlobalWorkSizeQk[1]);
|
|
ret |= mKernel_qk->get().setArg(index++, openCLBuffer(query));
|
|
ret |= mKernel_qk->get().setArg(index++, keyBuffer);
|
|
ret |= mKernel_qk->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
|
|
ret |= mKernel_qk->get().setArg(index++, scale);
|
|
ret |= mKernel_qk->get().setArg(index++, mKvSeqlen);
|
|
ret |= mKernel_qk->get().setArg(index++, mKeyValueMaxlen);
|
|
ret |= mKernel_qk->get().setArg(index++, numHead);
|
|
ret |= mKernel_qk->get().setArg(index++, headDim);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qk_decode");
|
|
|
|
mLocalWorkSizeQk = localWS2DDefault(mGlobalWorkSizeQk, maxWorkGroupSize, runtime, "matmul_qk_decode", mKernel_qk, mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGlobalWorkSizeQk[0] = ROUND_UP(mGlobalWorkSizeQk[0], std::max((uint32_t)1, mLocalWorkSizeQk[0]));
|
|
mGlobalWorkSizeQk[1] = ROUND_UP(mGlobalWorkSizeQk[1], std::max((uint32_t)1, mLocalWorkSizeQk[1]));
|
|
if(mNeedKvCache) {
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 0, sizeof(mGlobalWorkSizeQk0), &mGlobalWorkSizeQk0});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &(*(mKVCacheCLManager->key()))()});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &openCLDeferBuffer(mTempQK.get())()});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKvSeqlen), &mKvSeqlen});
|
|
mQkUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
mQkGlobal_size[0] = mGlobalWorkSizeQk[0];
|
|
mQkGlobal_size[1] = mGlobalWorkSizeQk[1];
|
|
mQkUpdateInfo.update_global_size.push_back({0, mQkGlobal_size});
|
|
mOpRecordUpdateInfo.emplace_back(&mQkUpdateInfo);
|
|
mOpenCLBackend->recordKernel2d(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, &mQkUpdateInfo);
|
|
} else {
|
|
mOpenCLBackend->recordKernel2d(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk);
|
|
}
|
|
}
|
|
{
|
|
// softmax
|
|
int inside = 1;
|
|
int outside = numHead;
|
|
int localSize = 64;
|
|
|
|
std::set<std::string> buildOption;
|
|
buildOption.emplace("-DSOFTMAX_LOCAL_SIZE=" + std::to_string(localSize));
|
|
mKernel_softmax = runtime->buildKernel("softmax_buf", "softmax_in1_buf", buildOption, mOpenCLBackend->getPrecision());
|
|
mGlobalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), static_cast<uint32_t>(inside), static_cast<uint32_t>(outside)};
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_softmax));
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[0]);
|
|
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[1]);
|
|
ret |= mKernel_softmax->get().setArg(index++, mGlobalWorkSizeSoftMax[2]);
|
|
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempQK.get()));
|
|
ret |= mKernel_softmax->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_softmax->get().setArg(index++, inside);
|
|
ret |= mKernel_softmax->get().setArg(index++, outside);
|
|
ret |= mKernel_softmax->get().setArg(index++, mKvSeqlen);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg softmax");
|
|
|
|
mLocalWorkSizeSoftMax = {static_cast<uint32_t>(localSize), 1, 1};
|
|
if(localSize == 1){
|
|
mLocalWorkSizeSoftMax = localWS3DDefault(mGlobalWorkSizeSoftMax, maxWorkGroupSize, runtime, "softmax", mKernel_softmax, mOpenCLBackend->getCLTuneLevel(), "softmax_buf").first;
|
|
}
|
|
mGlobalWorkSizeSoftMax[0] = ROUND_UP(mGlobalWorkSizeSoftMax[0], std::max((uint32_t)1, mLocalWorkSizeSoftMax[0]));
|
|
mGlobalWorkSizeSoftMax[1] = ROUND_UP(mGlobalWorkSizeSoftMax[1], std::max((uint32_t)1, mLocalWorkSizeSoftMax[1]));
|
|
mGlobalWorkSizeSoftMax[2] = ROUND_UP(mGlobalWorkSizeSoftMax[2], std::max((uint32_t)1, mLocalWorkSizeSoftMax[2]));
|
|
if(mNeedKvCache) {
|
|
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &openCLDeferBuffer(mTempQK.get())()});
|
|
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &openCLDeferBuffer(mTempSoftMax.get())()});
|
|
mSoftMaxUpdateInfo.update_kernel_args.push_back({0, 7, sizeof(mKvSeqlen), &mKvSeqlen});
|
|
mOpRecordUpdateInfo.emplace_back(&mSoftMaxUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, &mSoftMaxUpdateInfo);
|
|
} else {
|
|
mOpenCLBackend->recordKernel3d(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax);
|
|
}
|
|
}
|
|
{
|
|
// rearrange value
|
|
std::set<std::string> buildOption;
|
|
|
|
mKernel_rearrangeV = runtime->buildKernel("attention_buf", "rearrange_v", buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel_rearrangeV));
|
|
|
|
mGlobalWorkSizeRearrgV = {static_cast<uint32_t>(UP_DIV(headDim, 4)), \
|
|
static_cast<uint32_t>(1), \
|
|
static_cast<uint32_t>(kvNumHead * batch)};
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[0]);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[1]);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mGlobalWorkSizeRearrgV[2]);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, openCLBuffer(value));
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, valueBuffer);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mPastKvSeqlen);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, mKeyValueMaxlen);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, seqlen);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, kvNumHead);
|
|
ret |= mKernel_rearrangeV->get().setArg(index++, headDim);
|
|
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg rearrange_v");
|
|
mLocalWorkSizeRearrgV = localWS3DDefault(mGlobalWorkSizeRearrgV, maxWorkGroupSize, runtime, "rearrange_v", mKernel_rearrangeV, mOpenCLBackend->getCLTuneLevel(), "attention_buf").first;
|
|
mGlobalWorkSizeRearrgV[0] = ROUND_UP(mGlobalWorkSizeRearrgV[0], std::max((uint32_t)1, mLocalWorkSizeRearrgV[0]));
|
|
mGlobalWorkSizeRearrgV[1] = ROUND_UP(mGlobalWorkSizeRearrgV[1], std::max((uint32_t)1, mLocalWorkSizeRearrgV[1]));
|
|
mGlobalWorkSizeRearrgV[2] = ROUND_UP(mGlobalWorkSizeRearrgV[2], std::max((uint32_t)1, mLocalWorkSizeRearrgV[2]));
|
|
if(mNeedKvCache) {
|
|
mRgVUpdateInfo.update_kernel_args.push_back({0, 4, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
|
|
mRgVUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mPastKvSeqlen), &mPastKvSeqlen});
|
|
mRgVUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
mOpRecordUpdateInfo.emplace_back(&mRgVUpdateInfo);
|
|
mOpenCLBackend->recordKernel3d(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, &mRgVUpdateInfo);
|
|
} else {
|
|
mOpenCLBackend->recordKernel3d(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV);
|
|
}
|
|
}
|
|
// qk * value
|
|
{
|
|
std::set<std::string> buildOption;
|
|
buildOption.emplace("-DNUMHEAD_GROUP_SIZE=" + std::to_string(group_size));
|
|
const int total_kernel = 2;
|
|
std::string kernelName[total_kernel] = {"matmul_qkv_decode_b4", "matmul_qkv_decode_b8"};
|
|
std::string unroll[total_kernel] = {"-DLOOP_UNROLL_4", "-DLOOP_UNROLL_8"};
|
|
int itemC[total_kernel] = {4, 8};
|
|
int actual_kernel = 2;
|
|
std::shared_ptr<KernelWrap> kernel[total_kernel * total_kernel];
|
|
std::vector<uint32_t> globalWorkSize[total_kernel * total_kernel];
|
|
std::vector<uint32_t> localWorkSize[total_kernel * total_kernel];
|
|
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
|
|
|
|
for (int i = 0; i < actual_kernel; i++) {
|
|
for(int j = 0; j < actual_kernel; j++){
|
|
int knl_idx = i * total_kernel + j;
|
|
auto option = buildOption;
|
|
option.emplace(unroll[j]);
|
|
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("attention_buf", kernelName[i], option, mOpenCLBackend->getPrecision());
|
|
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
|
|
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(headDim, itemC[i])), static_cast<uint32_t>(numHead)};
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= kernel[knl_idx]->get().setArg(index++, globalWorkSize[knl_idx][0]);
|
|
ret |= kernel[knl_idx]->get().setArg(index++, globalWorkSize[knl_idx][1]);
|
|
ret |= kernel[knl_idx]->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
|
|
ret |= kernel[knl_idx]->get().setArg(index++, valueBuffer);
|
|
ret |= kernel[knl_idx]->get().setArg(index++, openCLBuffer(outputs[0]));
|
|
ret |= kernel[knl_idx]->get().setArg(index++, mKvSeqlen);
|
|
ret |= kernel[knl_idx]->get().setArg(index++, mKeyValueMaxlen);
|
|
ret |= kernel[knl_idx]->get().setArg(index++, numHead);
|
|
ret |= kernel[knl_idx]->get().setArg(index++, kvNumHead);
|
|
ret |= kernel[knl_idx]->get().setArg(index++, headDim);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qkv_decode");
|
|
std::pair<std::vector<uint32_t>, int> retTune;
|
|
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[i] + unroll[j], kernel[knl_idx], mOpenCLBackend->getCLTuneLevel(), "attention_buf");
|
|
if(min_cost.first > retTune.second) {
|
|
min_cost.first = retTune.second;
|
|
min_cost.second = knl_idx;
|
|
mLocalWorkSizeQkv = {retTune.first[0], retTune.first[1]};
|
|
}
|
|
}
|
|
}
|
|
int min_index = min_cost.second / 2;
|
|
int min_index_unroll = min_cost.second % 2;
|
|
mGlobalWorkSizeQkv = {globalWorkSize[min_cost.second][0], globalWorkSize[min_cost.second][1]};
|
|
buildOption.emplace(unroll[min_index_unroll]);
|
|
mKernel_qkv = runtime->buildKernel("attention_buf", kernelName[min_index], buildOption, mOpenCLBackend->getPrecision(), inputs[0], outputs[0]);
|
|
|
|
uint32_t index = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[0]);
|
|
ret |= mKernel_qkv->get().setArg(index++, mGlobalWorkSizeQkv[1]);
|
|
ret |= mKernel_qkv->get().setArg(index++, openCLDeferBuffer(mTempSoftMax.get()));
|
|
ret |= mKernel_qkv->get().setArg(index++, valueBuffer);
|
|
ret |= mKernel_qkv->get().setArg(index++, openCLBuffer(outputs[0]));
|
|
ret |= mKernel_qkv->get().setArg(index++, mKvSeqlen);
|
|
ret |= mKernel_qkv->get().setArg(index++, mKeyValueMaxlen);
|
|
ret |= mKernel_qkv->get().setArg(index++, numHead);
|
|
ret |= mKernel_qkv->get().setArg(index++, kvNumHead);
|
|
ret |= mKernel_qkv->get().setArg(index++, headDim);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg matmul_qkv_decode");
|
|
|
|
mGlobalWorkSizeQkv[0] = ROUND_UP(mGlobalWorkSizeQkv[0], std::max((uint32_t)1, mLocalWorkSizeQkv[0]));
|
|
mGlobalWorkSizeQkv[1] = ROUND_UP(mGlobalWorkSizeQkv[1], std::max((uint32_t)1, mLocalWorkSizeQkv[1]));
|
|
if(mNeedKvCache) {
|
|
mQkvUpdateInfo.update_kernel_args.push_back({0, 2, sizeof(cl_mem), &openCLDeferBuffer(mTempSoftMax.get())()});
|
|
mQkvUpdateInfo.update_kernel_args.push_back({0, 3, sizeof(cl_mem), &(*(mKVCacheCLManager->value()))()});
|
|
mQkvUpdateInfo.update_kernel_args.push_back({0, 5, sizeof(mKvSeqlen), &mKvSeqlen});
|
|
mQkvUpdateInfo.update_kernel_args.push_back({0, 6, sizeof(mKeyValueMaxlen), &mKeyValueMaxlen});
|
|
mOpRecordUpdateInfo.emplace_back(&mQkvUpdateInfo);
|
|
mOpenCLBackend->recordKernel2d(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, &mQkvUpdateInfo);
|
|
} else {
|
|
mOpenCLBackend->recordKernel2d(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv);
|
|
}
|
|
}
|
|
mOpenCLBackend->endRecord(mRecording);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
// [Batch, q_seqlen, HeadNum, HeadDim] -> [Batch, kv_seqlen, HeadNum, HeadDim]
|
|
ErrorCode AttentionBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
mOpenCLBackend->startRecord(mRecording);
|
|
auto shape = inputs[0]->shape();
|
|
int batch = shape[0];
|
|
int seqlen = shape[1];
|
|
int numHead = shape[2];
|
|
int headDim = shape[3];
|
|
int kvNumHead = inputs[1]->shape()[2];
|
|
if(mNeedKvCache) {
|
|
// if has kv_cache, default has mask
|
|
MNN_ASSERT(inputs.size() > 3);
|
|
}
|
|
mHasMask = inputs.size() > 3;
|
|
mIsDecode = seqlen == 1 && mMeta->add == 1;
|
|
|
|
// reset updateArgs variable and kernel vector
|
|
init();
|
|
// handle kv_cache, like copy kv
|
|
handleKVCache(inputs, outputs);
|
|
|
|
mLongPrefill = false;
|
|
if(mIsDecode) {
|
|
return decodeResize(inputs, outputs);
|
|
} else {
|
|
if(mPastKvSeqlen == 0){
|
|
std::pair<std::vector<uint32_t>, uint32_t> tuneInfo;
|
|
std::string info = "attention_" + std::to_string(batch) + "_" + std::to_string(numHead) + "_" + std::to_string(headDim) + "_" + std::to_string(kvNumHead);
|
|
if(seqlen > 16){
|
|
if(getTunedInfo(info, {static_cast<unsigned int>(seqlen)}, tuneInfo, mOpenCLBackend->getOpenCLRuntime())){
|
|
mLongPrefill = tuneInfo.first[0];
|
|
} else{
|
|
if (mOpenCLBackend->getCLTuneLevel() == Heavy || mOpenCLBackend->getCLTuneLevel() == Wide){
|
|
setRecordClose closeRecord(mOpenCLBackend);
|
|
// tunning choose use witch preill
|
|
prefillResize(inputs, outputs);
|
|
auto shortPrefillTime = getExecuteTime();
|
|
init();
|
|
mLongPrefill = true;
|
|
longPrefillResize(inputs, outputs);
|
|
auto longPrefillTime = getExecuteTime();
|
|
mLongPrefill = false;
|
|
if(longPrefillTime < shortPrefillTime){
|
|
mLongPrefill = true;
|
|
}
|
|
std::pair<std::vector<uint32_t>, uint32_t> tuneInfoTmp = std::make_pair<std::vector<uint32_t>, uint32_t>({mLongPrefill}, 0);
|
|
setTunedInfo(info, {static_cast<unsigned int>(seqlen)}, tuneInfoTmp, mOpenCLBackend->getOpenCLRuntime(), "attention_buf");
|
|
init();
|
|
}else{
|
|
if(seqlen > 512){
|
|
mLongPrefill = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(mLongPrefill){
|
|
longPrefillResize(inputs, outputs);
|
|
}else{
|
|
prefillResize(inputs, outputs);
|
|
}
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
int AttentionBufExecution::getExecuteTime(){
|
|
int executeTime = 0;
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
if(mLongPrefill) {
|
|
int seq_idx = 0;
|
|
cl::Event event0, event1, event2, event3, event4, event5, event6;
|
|
run3DKernelDefault(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event0);
|
|
executeTime += runtime->getEventTime(event0);
|
|
if(mHasMask) {
|
|
run3DKernelDefault(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event1);
|
|
executeTime += runtime->getEventTime(event1);
|
|
}
|
|
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
|
|
run3DKernelDefault(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event2);
|
|
executeTime += runtime->getEventTime(event2);
|
|
run3DKernelDefault(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event3);
|
|
executeTime += runtime->getEventTime(event3);
|
|
run3DKernelDefault(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event4);
|
|
executeTime += runtime->getEventTime(event4);
|
|
run3DKernelDefault(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event5);
|
|
executeTime += runtime->getEventTime(event5);
|
|
}
|
|
seq_idx = 0;
|
|
run3DKernelDefault(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event6);
|
|
executeTime += runtime->getEventTime(event6);
|
|
} else{
|
|
cl::Event event0, event1, event2, event3, event4, event5, event6;
|
|
run3DKernelDefault(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ, mOpenCLBackend->getOpenCLRuntime(), &event0);
|
|
executeTime += runtime->getEventTime(event0);
|
|
run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime(), &event1);
|
|
executeTime += runtime->getEventTime(event1);
|
|
if(mHasMask) {
|
|
run3DKernelDefault(mKernel_rearrangeMask, mGlobalWorkSizeRearrgM, mLocalWorkSizeRearrgM, mOpenCLBackend->getOpenCLRuntime(), &event2);
|
|
executeTime += runtime->getEventTime(event2);
|
|
}
|
|
run3DKernelDefault(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime(), &event3);
|
|
executeTime += runtime->getEventTime(event3);
|
|
run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime(), &event4);
|
|
executeTime += runtime->getEventTime(event4);
|
|
run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime(), &event5);
|
|
executeTime += runtime->getEventTime(event5);
|
|
run3DKernelDefault(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime(), &event6);
|
|
executeTime += runtime->getEventTime(event6);
|
|
}
|
|
return executeTime;
|
|
}
|
|
|
|
ErrorCode AttentionBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start AttentionBufExecution onExecute !\n");
|
|
#endif
|
|
if(mNeedKvCache){
|
|
mKVCacheCLManager->reallocKVCache(mMeta);
|
|
}
|
|
UpdateArgs(inputs, outputs);
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
if(mLongPrefill) {
|
|
int seq_idx = 0;
|
|
cl::Event event0, event1, event2, event3, event4, event5, event6;
|
|
run3DKernelDefault(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event0);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_qkv", event0});
|
|
if(mHasMask) {
|
|
run3DKernelDefault(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event1);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_mask", event1});
|
|
}
|
|
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
|
|
run3DKernelDefault(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event2);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qk_div_mask", event2});
|
|
run3DKernelDefault(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event3);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"softmax", event3});
|
|
run3DKernelDefault(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event4);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"transpose_softmax", event4});
|
|
run3DKernelDefault(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event5);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qkv", event5});
|
|
}
|
|
seq_idx = 0;
|
|
run3DKernelDefault(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx], mOpenCLBackend->getOpenCLRuntime(), &event6);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_output", event6});
|
|
} else{
|
|
if(mIsDecode){
|
|
cl::Event event0, event1, event2, event3, event4;
|
|
run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime(), &event0);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_k", event0});
|
|
runKernel2D(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime(), &event1);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qk_div_mask", event1});
|
|
run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime(), &event2);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"softmax", event2});
|
|
run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime(), &event3);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_v", event3});
|
|
runKernel2D(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime(), &event4);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qkv", event4});
|
|
}else{
|
|
cl::Event event0, event1, event2, event3, event4, event5, event6;
|
|
run3DKernelDefault(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ, mOpenCLBackend->getOpenCLRuntime(), &event0);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_q", event0});
|
|
run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime(), &event1);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_k", event1});
|
|
if(mHasMask) {
|
|
run3DKernelDefault(mKernel_rearrangeMask, mGlobalWorkSizeRearrgM, mLocalWorkSizeRearrgM, mOpenCLBackend->getOpenCLRuntime(), &event2);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_mask_shortprefill", event2});
|
|
}
|
|
run3DKernelDefault(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime(), &event3);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qk_div_mask", event3});
|
|
run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime(), &event4);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"softmax", event4});
|
|
run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime(), &event5);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"rearrange_v", event5});
|
|
run3DKernelDefault(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime(), &event6);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"matmul_qkv", event6});
|
|
}
|
|
}
|
|
#else
|
|
if(mOpenCLBackend->isUseRecordQueue()){
|
|
mOpenCLBackend->addRecord(mRecording, mOpRecordUpdateInfo);
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("End AttentionBufExecution onExecute... \n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
if(mLongPrefill) {
|
|
int seq_idx = 0;
|
|
run3DKernelDefault(mKernel_rearrange_vec[seq_idx], mGwsRearrgVec[seq_idx], mLwsRearrgVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
if(mHasMask) {
|
|
run3DKernelDefault(mKernel_mask_vec[seq_idx], mGwsMaskVec[seq_idx], mLwsMaskVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
}
|
|
for(int seq_idx = 0; seq_idx < mQseqSplitNum; seq_idx++) {
|
|
run3DKernelDefault(mKernel_qk_vec[seq_idx], mGwsQkVec[seq_idx], mLwsQkVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_softmax_vec[seq_idx], mGwsSoftMaxVec[seq_idx], mLwsSoftMaxVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_trans_vec[seq_idx], mGwsTransVec[seq_idx], mLwsTransVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_qkv_vec[seq_idx], mGwsQkvVec[seq_idx], mLwsQkvVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
|
|
}
|
|
seq_idx = 0;
|
|
run3DKernelDefault(mKernel_clip_vec[seq_idx], mGwsClipVec[seq_idx], mLwsClipVec[seq_idx], mOpenCLBackend->getOpenCLRuntime());
|
|
} else{
|
|
if(mIsDecode){
|
|
run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime());
|
|
runKernel2D(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime());
|
|
runKernel2D(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime());
|
|
}else{
|
|
run3DKernelDefault(mKernel_rearrangeQ, mGlobalWorkSizeRearrgQ, mLocalWorkSizeRearrgQ, mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_rearrange, mGlobalWorkSizeRearrg, mLocalWorkSizeRearrg, mOpenCLBackend->getOpenCLRuntime());
|
|
if(mHasMask) {
|
|
run3DKernelDefault(mKernel_rearrangeMask, mGlobalWorkSizeRearrgM, mLocalWorkSizeRearrgM, mOpenCLBackend->getOpenCLRuntime());
|
|
}
|
|
run3DKernelDefault(mKernel_qk, mGlobalWorkSizeQk, mLocalWorkSizeQk, mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_softmax, mGlobalWorkSizeSoftMax, mLocalWorkSizeSoftMax, mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_rearrangeV, mGlobalWorkSizeRearrgV, mLocalWorkSizeRearrgV, mOpenCLBackend->getOpenCLRuntime());
|
|
run3DKernelDefault(mKernel_qkv, mGlobalWorkSizeQkv, mLocalWorkSizeQkv, mOpenCLBackend->getOpenCLRuntime());
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end AttentionBufExecution onExecute !\n");
|
|
#endif
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
AttentionBufExecution::AttentionBufExecution(const MNN::Op *op, Backend* backend, bool kv_cahce) : CommonExecution(backend, op) {
|
|
mNeedKvCache = kv_cahce;
|
|
mKVCacheCLManager.reset(new KVCacheCLManager(backend, kv_cahce));
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
auto kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("softmax_buf", "softmax_buf", {"-DSOFTMAX_LOCAL_SIZE=512"}, mOpenCLBackend->getPrecision());
|
|
mMeta = (KVMeta*)(mOpenCLBackend->getRuntime()->pMeta);
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel));
|
|
}
|
|
|
|
AttentionBufExecution::AttentionBufExecution(std::shared_ptr<KVCacheCLManager> manager, const MNN::Op *op, Backend *backend) : CommonExecution(backend, op), mKVCacheCLManager(manager) {
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
auto kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("softmax_buf", "softmax_buf", {"-DSOFTMAX_LOCAL_SIZE=512"}, mOpenCLBackend->getPrecision());
|
|
mMeta = (KVMeta*)(mOpenCLBackend->getRuntime()->pMeta);
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel));
|
|
}
|
|
|
|
bool AttentionBufExecution::onClone(Backend* bn, const Op* op, Execution** dst) {
|
|
if (nullptr == dst) {
|
|
return true;
|
|
}
|
|
*dst = new AttentionBufExecution(mKVCacheCLManager, op, bn);
|
|
return true;
|
|
}
|
|
|
|
class AttentionBufCreator : public OpenCLBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(inputs[i], false);
|
|
}
|
|
for (int i = 0; i < outputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(outputs[i], false);
|
|
}
|
|
auto param = op->main_as_AttentionParam();
|
|
return new AttentionBufExecution(op, backend, param->kv_cache());
|
|
}
|
|
};
|
|
REGISTER_OPENCL_OP_CREATOR_TRANSFORMER(AttentionBufCreator, OpType_Attention, BUFFER);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|
|
#endif/* MNN_SUPPORT_TRANSFORMER_FUSE */
|