mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
				
	
	
		
			248 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
//
 | 
						|
//  ShapeConvolution.cpp
 | 
						|
//  MNN
 | 
						|
//
 | 
						|
//  Created by MNN on 2019/01/10.
 | 
						|
//  Copyright © 2018, Alibaba Group Holding Limited
 | 
						|
//
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include "shape/SizeComputer.hpp"
 | 
						|
#include "core/TensorUtils.hpp"
 | 
						|
namespace MNN {
 | 
						|
class ConvolutionSizeComputer : public SizeComputer {
 | 
						|
public:
 | 
						|
    static const Convolution2DCommon* loadCommon(const Op* op) {
 | 
						|
        const Convolution2DCommon* layer = nullptr;
 | 
						|
        if (op->main_type() == OpParameter_Convolution2D) {
 | 
						|
            layer = op->main_as_Convolution2D()->common();
 | 
						|
        } else {
 | 
						|
            MNN_ASSERT(op->main_type() == OpParameter_TfQuantizedConv2D);
 | 
						|
            layer = op->main_as_TfQuantizedConv2D()->common();
 | 
						|
        }
 | 
						|
        return layer;
 | 
						|
    }
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(inputs.size() >= 1);
 | 
						|
        MNN_ASSERT(1 == outputs.size());
 | 
						|
        const Convolution2DCommon* layer = loadCommon(op);
 | 
						|
        int kX = layer->kernelX();
 | 
						|
        int kY = layer->kernelY();
 | 
						|
        auto outputCount = layer->outputCount();
 | 
						|
        if (inputs.size() > 1 && outputCount == 0) {
 | 
						|
            // From TF's multi input convolution
 | 
						|
            outputCount = inputs[1]->length(0);
 | 
						|
            kX = inputs[1]->length(3);
 | 
						|
            kY = inputs[1]->length(2);
 | 
						|
        }
 | 
						|
        int kernel_width  = layer->dilateX() * (kX - 1) + 1;
 | 
						|
        int kernel_height = layer->dilateY() * (kY - 1) + 1;
 | 
						|
 | 
						|
        int output_width  = 1;
 | 
						|
        int output_height = 1;
 | 
						|
 | 
						|
        auto input = inputs[0];
 | 
						|
        if (input->dimensions() <= 1) {
 | 
						|
            // Convolution is not valid for dimension <= 1
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        auto inputCount = layer->inputCount();
 | 
						|
        bool depthwiseMatch =
 | 
						|
            inputCount == layer->outputCount() &&
 | 
						|
            inputCount == layer->group() &&
 | 
						|
            inputCount == input->channel();
 | 
						|
        int commonChannelMatch =
 | 
						|
            inputCount == inputs[0]->channel() ||            // real relationship in express
 | 
						|
            (inputCount * layer->group() == input->channel()); // standard definition of group convolution
 | 
						|
        bool valid = inputCount == 0 || depthwiseMatch || commonChannelMatch;
 | 
						|
 | 
						|
        // For Tensorflow Group Convolution, the inputCount is the size of filter's input count
 | 
						|
        if (inputs.size() == 1 && !valid && OpType_Convolution == op->type()) {
 | 
						|
            input->printShape();
 | 
						|
            MNN_ERROR(
 | 
						|
                "Error for compute convolution shape, inputCount:%d, outputCount:%d, KH:%d, KW:%d, group:%d\ninputChannel: %d, batch:%d, width:%d, height:%d. "
 | 
						|
                "Input data channel may be mismatch with filter channel count\n",
 | 
						|
                layer->inputCount(), outputCount, kY, kX, layer->group(),
 | 
						|
                input->channel(), input->batch(), input->width(), input->height());
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        if (layer->padMode() == PadMode_SAME) {
 | 
						|
            // Tensorflow padding mode SAME
 | 
						|
            output_width  = ceil((float)input->width() / (float)layer->strideX());
 | 
						|
            output_height = ceil((float)input->height() / (float)layer->strideY());
 | 
						|
        } else if (layer->padMode() == PadMode_VALID) {
 | 
						|
            // Tensorflow padding mode VALID
 | 
						|
            output_width  = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
 | 
						|
            output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
 | 
						|
        } else {
 | 
						|
            // Pad_Caffe means User setted padding
 | 
						|
            if (nullptr != layer->pads()) {
 | 
						|
                MNN_ASSERT(layer->pads()->size() >= 4);
 | 
						|
                int input_width  = input->width() + layer->pads()->data()[1] + layer->pads()->data()[3];
 | 
						|
                int input_height = input->height() + layer->pads()->data()[0] + layer->pads()->data()[2];
 | 
						|
                output_width     = input_width < kernel_width ? 0 : (input_width - kernel_width) / layer->strideX() + 1;
 | 
						|
                output_height    = input_height < kernel_height ? 0 : (input_height - kernel_height) / layer->strideY() + 1;
 | 
						|
            } else {
 | 
						|
                int input_width  = input->width() + layer->padX() * 2;
 | 
						|
                int input_height = input->height() + layer->padY() * 2;
 | 
						|
                output_width     = (input_width - kernel_width) / layer->strideX() + 1;
 | 
						|
                output_height    = (input_height - kernel_height) / layer->strideY() + 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        auto& outputBuffer         = outputs[0]->buffer();
 | 
						|
        outputBuffer.dimensions    = input->buffer().dimensions;
 | 
						|
        auto format = TensorUtils::getDescribe(input)->dimensionFormat;
 | 
						|
        outputBuffer.type = input->getType();
 | 
						|
        if (op->main_as_Convolution2D() && op->main_as_Convolution2D()->symmetricQuan() && op->main_as_Convolution2D()->symmetricQuan()->outputDataType() != DataType_DT_INT8) {
 | 
						|
            auto type = op->main_as_Convolution2D()->symmetricQuan()->outputDataType();
 | 
						|
            outputs[0]->setType(type);
 | 
						|
        }
 | 
						|
        outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
 | 
						|
        if (MNN_DATA_FORMAT_NHWC == format) {
 | 
						|
            outputBuffer.dim[3].extent = outputCount;
 | 
						|
            outputBuffer.dim[1].extent = output_height;
 | 
						|
            outputBuffer.dim[2].extent = output_width;
 | 
						|
        } else {
 | 
						|
            outputBuffer.dim[1].extent = outputCount;
 | 
						|
            outputBuffer.dim[2].extent = output_height;
 | 
						|
            outputBuffer.dim[3].extent = output_width;
 | 
						|
        }
 | 
						|
        // MNN_PRINT("outputs: %d, %d, %d, %d\n", outputs[0]->length(0), outputs[0]->length(1), outputs[0]->length(2), outputs[0]->length(3));
 | 
						|
        TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                                 const std::vector<Tensor*>& outputs) const override {
 | 
						|
        const Convolution2DCommon* layer = loadCommon(op);
 | 
						|
        auto kw    = layer->kernelX();
 | 
						|
        auto kh    = layer->kernelY();
 | 
						|
        auto group = layer->group();
 | 
						|
        auto ic    = inputs[0]->channel();
 | 
						|
        auto oc    = outputs[0]->channel();
 | 
						|
        auto oSize = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch();
 | 
						|
        if (op->type() == OpType_QuantizedDepthwiseConv2D) {
 | 
						|
            group = ic;
 | 
						|
        }
 | 
						|
        if (layer->inputCount() != ic && layer->inputCount() > 0) {
 | 
						|
            group = ic / layer->inputCount();
 | 
						|
        }
 | 
						|
        auto flops = (float)oSize * kw * kh * (ic * oc / (group == 0 ? 1 : group)) / FLOPS_M;
 | 
						|
        return flops;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
class Dilation2DSizeComputer : public ConvolutionSizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(1 == inputs.size() && 1 == outputs.size());
 | 
						|
        return ConvolutionSizeComputer::onComputeSize(op, inputs, outputs);
 | 
						|
    }
 | 
						|
    virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                                 const std::vector<Tensor*>& outputs) const override {
 | 
						|
        auto output = outputs[0];
 | 
						|
        auto layer = op->main_as_Convolution2D()->common();
 | 
						|
        auto oSize = output->batch() * output->height() * output->width() * output->channel();
 | 
						|
        auto flops = (float)oSize * layer->kernelY() * layer->kernelX() / FLOPS_M;
 | 
						|
        return flops;
 | 
						|
    }
 | 
						|
};
 | 
						|
class Conv2DBackpropFilterSizeComputer : public SizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        auto common = op->main_as_Convolution2D()->common();
 | 
						|
        auto kernel = outputs[0];
 | 
						|
        kernel->buffer().dimensions = 4;
 | 
						|
        kernel->buffer().type = halide_type_of<float>();
 | 
						|
        TensorUtils::getDescribe(kernel)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
 | 
						|
        kernel->setLength(0, inputs[1]->channel());
 | 
						|
        kernel->setLength(1, inputs[0]->channel() / common->group());
 | 
						|
        kernel->setLength(2, common->kernelY());
 | 
						|
        kernel->setLength(3, common->kernelX());
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
class Im2ColSizeComputer : public ConvolutionSizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(1 == inputs.size() && 1 == outputs.size());
 | 
						|
        // get kh, kw
 | 
						|
        const Convolution2DCommon* layer = loadCommon(op);
 | 
						|
        auto kh    = layer->kernelY();
 | 
						|
        auto kw    = layer->kernelX();
 | 
						|
        // get oh, ow
 | 
						|
        ConvolutionSizeComputer::onComputeSize(op, inputs, outputs);
 | 
						|
        auto output = outputs[0];
 | 
						|
        int oh = output->height();
 | 
						|
        int ow = output->width();
 | 
						|
        // [n, ic, ih, iw] -> [ic*kh*kw, n*oh*ow]
 | 
						|
        auto input = inputs[0];
 | 
						|
        int n = input->batch();
 | 
						|
        int ic = input->channel();
 | 
						|
        int ih = input->height();
 | 
						|
        int iw = input->width();
 | 
						|
        output->buffer().dimensions = 2;
 | 
						|
        output->setLength(0, ic * kh * kw);
 | 
						|
        output->setLength(1, n * oh * ow);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
class Col2ImSizeComputer : public ConvolutionSizeComputer {
 | 
						|
public:
 | 
						|
    virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
 | 
						|
                               const std::vector<Tensor*>& outputs) const override {
 | 
						|
        MNN_ASSERT(2 == inputs.size() && 1 == outputs.size());
 | 
						|
        const Convolution2DCommon* layer = loadCommon(op);
 | 
						|
        auto kh    = layer->kernelY();
 | 
						|
        auto kw    = layer->kernelX();
 | 
						|
        auto input = inputs[0];
 | 
						|
        auto output = outputs[0];
 | 
						|
        auto outputShape = inputs[1];
 | 
						|
        auto oDim = outputShape->host<int32_t>();
 | 
						|
        int oh = 1, ow = 1;
 | 
						|
        if (outputShape->elementSize() == 2) {
 | 
						|
            oh = oDim[0];
 | 
						|
            ow = oDim[1];
 | 
						|
        } else {
 | 
						|
            MNN_ASSERT(false);
 | 
						|
        }
 | 
						|
        auto iDim = input->shape();
 | 
						|
        int batch = 1;
 | 
						|
        int colSize = iDim[0];
 | 
						|
        if (iDim.size() == 3) {
 | 
						|
            batch = iDim[0];
 | 
						|
            colSize = iDim[1];
 | 
						|
        } else if (iDim.size() == 2) {
 | 
						|
            colSize = iDim[0];
 | 
						|
        } else {
 | 
						|
            MNN_ASSERT(false);
 | 
						|
        }
 | 
						|
        output->buffer().dimensions = 4;
 | 
						|
        output->setLength(0, batch);
 | 
						|
        output->setLength(1, colSize / (kh * kw));
 | 
						|
        output->setLength(2, oh);
 | 
						|
        output->setLength(3, ow);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_Convolution);
 | 
						|
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvolutionDepthwise);
 | 
						|
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_TfQuantizedConv2D);
 | 
						|
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_QuantizedDepthwiseConv2D);
 | 
						|
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvInt8);
 | 
						|
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_DepthwiseConvInt8);
 | 
						|
REGISTER_SHAPE(Dilation2DSizeComputer, OpType_Dilation2D);
 | 
						|
REGISTER_SHAPE(Conv2DBackpropFilterSizeComputer, OpType_Conv2DBackPropFilter);
 | 
						|
REGISTER_SHAPE(Im2ColSizeComputer, OpType_Im2Col);
 | 
						|
REGISTER_SHAPE_INPUTS(Col2ImSizeComputer, OpType_Col2Im, {1});
 | 
						|
} // namespace MNN
 |