mirror of https://github.com/alibaba/MNN.git
360 lines
18 KiB
C++
360 lines
18 KiB
C++
//
|
|
// DepthwiseConvBufExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
|
|
#include "backend/opencl/execution/buffer/DepthwiseConvBufExecution.hpp"
|
|
#include "backend/opencl/execution/buffer/DepthwiseConvSubgroupBufExecution.hpp"
|
|
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
|
|
#include "core/ConvolutionCommon.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
DepthwiseConvBufExecution::DepthwiseConvBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
|
|
: ConvBufCommonExecution(op->main_as_Convolution2D(), backend) {
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
mCon2dParams = op->main_as_Convolution2D();
|
|
mConv2dCommonParams = mCon2dParams->common();
|
|
mStrides = {mConv2dCommonParams->strideY(), mConv2dCommonParams->strideX()};
|
|
mDilations = {mConv2dCommonParams->dilateY(), mConv2dCommonParams->dilateX()};
|
|
|
|
int kernelWidth = mConv2dCommonParams->kernelX();
|
|
int kernelHeight = mConv2dCommonParams->kernelY();
|
|
int outputChannel = mConv2dCommonParams->outputCount();
|
|
|
|
std::vector<int> filterShape{1, outputChannel, kernelHeight, kernelWidth};
|
|
std::vector<int> filterImageShape{(int)kernelHeight * kernelWidth, (int)UP_DIV(outputChannel, 4)};
|
|
|
|
|
|
const float* filterDataPtr = nullptr;
|
|
int filterDataSize = 0;
|
|
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
|
|
ConvolutionCommon::getConvParameters(&quanCommon, mCon2dParams, &filterDataPtr, &filterDataSize);
|
|
|
|
mFilter.reset(Tensor::createDevice<float>({1, ROUND_UP(filterImageShape[1], 2)/*for kernel C8 read*/, 1, 4 * filterImageShape[0]}));
|
|
std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>(filterShape));
|
|
|
|
int buffer_size = filterBuffer->elementSize();
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
|
|
buffer_size *= sizeof(half_float::half);
|
|
} else {
|
|
buffer_size *= sizeof(float);
|
|
}
|
|
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
|
|
filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
|
|
cl_int error;
|
|
auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
|
|
if(ptrCL != nullptr && error == CL_SUCCESS){
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
|
|
for (int i = 0; i < filterBuffer->elementSize(); i++) {
|
|
((half_float::half *)ptrCL)[i] = (half_float::half)(filterDataPtr[i]);
|
|
}
|
|
} else {
|
|
::memcpy(ptrCL, filterDataPtr, filterBuffer->size());
|
|
}
|
|
}else{
|
|
MNN_ERROR("Map error ptrCL == nullptr \n");
|
|
}
|
|
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
|
|
|
|
mOpenCLBackend->onAcquireBuffer(mFilter.get(), Backend::STATIC);
|
|
MNN::OpenCL::BufferConvertor bufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
|
|
|
|
bool needTrans = false;
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf() == false){
|
|
needTrans = true;
|
|
}
|
|
bufferConvertor.convertToNC4HW4Buffer(filterBuffer.get(), MNN::OpenCL::DW_CONV2D_FILTER, mFilter.get(), needTrans);
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
std::string kernelName = "depthwise_conv2d_c4h1w2";
|
|
if (mConv2dCommonParams->strideX() == 1 && mConv2dCommonParams->strideY() == 1 &&
|
|
mConv2dCommonParams->dilateX() == 1 && mConv2dCommonParams->dilateY() == 1) {
|
|
mStride_1 = true;
|
|
}
|
|
if(mStride_1) {
|
|
kernelName = "depthwise_conv2d_s1_c4h1w4";
|
|
}
|
|
|
|
if (mConv2dCommonParams->relu() == true) {
|
|
mBuildOptions.emplace("-DRELU");
|
|
} else if (mConv2dCommonParams->relu6() == true) {
|
|
mBuildOptions.emplace("-DRELU6");
|
|
}
|
|
|
|
mKernel = runtime->buildKernel("depthwise_conv2d_buf", kernelName, mBuildOptions);
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
|
|
}
|
|
|
|
DepthwiseConvBufExecution::~DepthwiseConvBufExecution() {
|
|
mOpenCLBackend->onReleaseBuffer(mFilter.get(), Backend::STATIC);
|
|
}
|
|
|
|
ErrorCode DepthwiseConvBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
std::vector<int> outputShape = tensorShapeFormat(output);
|
|
|
|
auto padding = ConvolutionCommon::convolutionPad(input, output, mConv2dCommonParams);
|
|
mPaddings[0] = padding.second;//padY
|
|
mPaddings[1] = padding.first;//padX
|
|
|
|
const int outputHeight = outputShape.at(1);
|
|
const int outputWidth = outputShape.at(2);
|
|
const int outputChannel = outputShape.at(3);
|
|
|
|
const int inputHeight = inputShape.at(1);
|
|
const int inputWidth = inputShape.at(2);
|
|
const int inputChannels = inputShape.at(3);
|
|
|
|
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
|
|
const int filterHeight = mCon2dParams->common()->kernelY();
|
|
const int filterWidth = mCon2dParams->common()->kernelX();
|
|
|
|
int inputImageShape[2] = {inputHeight, inputWidth};
|
|
int outputImageShape[2] = {outputHeight, outputWidth};
|
|
int strideShape[2] = {mStrides[0], mStrides[1]};
|
|
int paddingShape[2] = {mPaddings[0], mPaddings[1]};
|
|
int kernelShape[2] = {filterHeight, filterWidth};
|
|
int dilationShape[2] = {mDilations[0], mDilations[1]};
|
|
|
|
if(mStride_1) {
|
|
// {"depthwise_conv2d_s1_c4h1w4", "depthwise_conv2d_s1_c8h1w4", "depthwise_conv2d_s1_c8h1w2"};
|
|
const int total_kernel = 3;
|
|
std::string kernelName[total_kernel] = {"depthwise_conv2d_s1_c4h1w4", "depthwise_conv2d_s1_c8h1w4", "depthwise_conv2d_s1_c8h1w2"};
|
|
int itemC[total_kernel] = {4, 8, 8};
|
|
int itemW[total_kernel] = {4, 4, 2};
|
|
int itemH[total_kernel] = {1, 1, 1};
|
|
|
|
int actual_kernel = total_kernel;
|
|
|
|
|
|
if(kernelShape[0]==3 && kernelShape[1]==3 && paddingShape[0]==1 && paddingShape[1]==1) {
|
|
//{"depthwise_conv2d_k3s1p1_c4h1w2", "depthwise_conv2d_k3s1p1_c4h2w2"}
|
|
actual_kernel = 2;
|
|
kernelName[0] = "depthwise_conv2d_k3s1p1_c4h1w2";
|
|
itemC[0] = 4;
|
|
itemW[0] = 2;
|
|
itemH[0] = 1;
|
|
|
|
kernelName[1] = "depthwise_conv2d_k3s1p1_c4h2w2";
|
|
itemC[1] = 4;
|
|
itemW[1] = 2;
|
|
itemH[1] = 2;
|
|
}
|
|
|
|
if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
|
|
actual_kernel = 1;
|
|
}
|
|
|
|
cl::Kernel kernel[total_kernel];
|
|
std::vector<uint32_t> globalWorkSize[total_kernel];
|
|
std::vector<uint32_t> localWorkSize[total_kernel];
|
|
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
|
|
for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
|
|
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[knl_idx], mBuildOptions);
|
|
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
|
|
|
|
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * UP_DIV(outputShape.at(1), itemH[knl_idx]))};
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][0]);
|
|
ret |= kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][1]);
|
|
ret |= kernel[knl_idx].setArg(idx++, openCLBuffer(input));
|
|
ret |= kernel[knl_idx].setArg(idx++, openCLBuffer(mFilter.get()));
|
|
ret |= kernel[knl_idx].setArg(idx++, openCLBuffer(mBias.get()));
|
|
ret |= kernel[knl_idx].setArg(idx++, openCLBuffer(output));
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(inputImageShape), inputImageShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, static_cast<int>(inputChannels));
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(outputImageShape), outputImageShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(kernelShape), kernelShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(paddingShape), paddingShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(dilationShape), dilationShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(strideShape), strideShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, UP_DIV(outputWidth, itemW[knl_idx]));
|
|
ret |= kernel[knl_idx].setArg(idx++, UP_DIV(outputChannel, 4));
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg DepthwiseConvBufExecution Stride_1 Kernel Select");
|
|
|
|
std::pair<std::vector<uint32_t>, int> retTune;
|
|
retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx], maxWorkGroupSize);
|
|
//printf("depthwiseCovs1 %d, %d\n", knl_idx, retTune.second);
|
|
if(min_cost.first > retTune.second) {
|
|
min_cost.first = retTune.second;
|
|
min_cost.second = knl_idx;
|
|
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
|
|
}
|
|
}
|
|
int min_index = min_cost.second;
|
|
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
|
|
|
|
mKernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[min_index], mBuildOptions);
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
|
|
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(input));
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(mFilter.get()));
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(mBias.get()));
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(output));
|
|
ret |= mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
|
|
ret |= mKernel.setArg(idx++, static_cast<int>(inputChannels));
|
|
ret |= mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
|
|
ret |= mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
|
|
ret |= mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
|
|
ret |= mKernel.setArg(idx++, sizeof(dilationShape), dilationShape);
|
|
ret |= mKernel.setArg(idx++, sizeof(strideShape), strideShape);
|
|
ret |= mKernel.setArg(idx++, UP_DIV(outputWidth, itemW[min_index]));
|
|
ret |= mKernel.setArg(idx++, UP_DIV(outputChannel, 4));
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg DepthwiseConvBufExecution Stride_1");
|
|
|
|
//printf("DepthwiseConvBufs1 %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outputChannel, outputWidth);
|
|
|
|
} else {
|
|
// {"depthwise_conv2d_c4h1w4", "depthwise_conv2d_c4h1w2", "depthwise_conv2d_c4h1w1"};
|
|
const int total_kernel = 3;
|
|
const std::string kernelName[total_kernel] = {"depthwise_conv2d_c4h1w1", "depthwise_conv2d_c4h1w4", "depthwise_conv2d_c4h1w2"};
|
|
int itemC[total_kernel] = {4, 4, 4};
|
|
int itemW[total_kernel] = {1, 4, 2};
|
|
|
|
int actual_kernel = total_kernel;
|
|
if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
|
|
actual_kernel = 1;
|
|
}
|
|
|
|
cl::Kernel kernel[total_kernel];
|
|
std::vector<uint32_t> globalWorkSize[total_kernel];
|
|
std::vector<uint32_t> localWorkSize[total_kernel];
|
|
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
|
|
for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
|
|
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[knl_idx], mBuildOptions);
|
|
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
|
|
|
|
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * outputShape.at(1))};
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][0]);
|
|
ret |= kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][1]);
|
|
ret |= kernel[knl_idx].setArg(idx++, openCLBuffer(input));
|
|
ret |= kernel[knl_idx].setArg(idx++, openCLBuffer(mFilter.get()));
|
|
ret |= kernel[knl_idx].setArg(idx++, openCLBuffer(mBias.get()));
|
|
ret |= kernel[knl_idx].setArg(idx++, openCLBuffer(output));
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(inputImageShape), inputImageShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, static_cast<int>(inputChannels));
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(outputImageShape), outputImageShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(kernelShape), kernelShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(paddingShape), paddingShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(dilationShape), dilationShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, sizeof(strideShape), strideShape);
|
|
ret |= kernel[knl_idx].setArg(idx++, UP_DIV(outputWidth, itemW[knl_idx]));
|
|
ret |= kernel[knl_idx].setArg(idx++, UP_DIV(outputChannel, 4));
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg DepthwiseConvBufExecution Kernel Select");
|
|
|
|
std::pair<std::vector<uint32_t>, int> retTune;
|
|
retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx], maxWorkGroupSize);
|
|
//printf("depthwiseCov!! %d, %d\n", knl_idx, retTune.second);
|
|
if(min_cost.first > retTune.second) {
|
|
min_cost.first = retTune.second;
|
|
min_cost.second = knl_idx;
|
|
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
|
|
}
|
|
}
|
|
int min_index = min_cost.second;
|
|
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
|
|
|
|
mKernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[min_index], mBuildOptions);
|
|
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
|
|
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(input));
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(mFilter.get()));
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(mBias.get()));
|
|
ret |= mKernel.setArg(idx++, openCLBuffer(output));
|
|
ret |= mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
|
|
ret |= mKernel.setArg(idx++, static_cast<int>(inputChannels));
|
|
ret |= mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
|
|
ret |= mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
|
|
ret |= mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
|
|
ret |= mKernel.setArg(idx++, sizeof(dilationShape), dilationShape);
|
|
ret |= mKernel.setArg(idx++, sizeof(strideShape), strideShape);
|
|
ret |= mKernel.setArg(idx++, UP_DIV(outputWidth, itemW[min_index]));
|
|
ret |= mKernel.setArg(idx++, UP_DIV(outputChannel, 4));
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg DepthwiseConvBufExecution");
|
|
|
|
//printf("DepthwiseConvBuf!! %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outputChannel, outputWidth);
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode DepthwiseConvBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start DepthwiseConvBufExecution onExecute !\n");
|
|
#endif
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
cl::Event event;
|
|
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime(),
|
|
&event);
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"DepthwiseConvBuf", event});
|
|
#else
|
|
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime());
|
|
#endif
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end DepthwiseConvBufExecution onExecute !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class DepthwiseConvolutionBufCreator : public OpenCLBackend::Creator {
|
|
public:
|
|
virtual ~DepthwiseConvolutionBufCreator() = default;
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
|
|
MNN_ASSERT(inputs.size() <= 3);
|
|
if (inputs.size() > 1) {
|
|
MNN_PRINT("multi input depthwise conv for opencl buffer not supoort!\n");
|
|
return nullptr;
|
|
}
|
|
|
|
MNN_ASSERT(inputs.size() == 1);
|
|
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
|
|
if (static_cast<OpenCLBackend *>(backend)->getOpenCLRuntime()->isSupportedIntelSubgroup() &&
|
|
outputs[0]->channel() >= 16) {
|
|
auto conv2D = op->main_as_Convolution2D();
|
|
auto pads = ConvolutionCommon::convolutionPadFull(inputs[0], outputs[0], conv2D->common());
|
|
TensorUtils::setTensorChannelPack(inputs[0], 16);
|
|
TensorUtils::setTensorPad(inputs[0], std::get<0>(pads), std::get<2>(pads), 0, 0);
|
|
return new DepthwiseConvSubgroupBufExecution(inputs, op, backend);
|
|
}
|
|
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(inputs[i], false);
|
|
}
|
|
for (int i = 0; i < outputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(outputs[i], false);
|
|
}
|
|
return new DepthwiseConvBufExecution(inputs, op, backend);
|
|
}
|
|
};
|
|
|
|
OpenCLCreatorRegister<DepthwiseConvolutionBufCreator> __DepthwiseConvBuf_op(OpType_ConvolutionDepthwise, BUFFER);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|