MNN/source/backend/opencl/execution/buffer/DepthwiseConvSubgroupBufExe...

293 lines
13 KiB
C++

//
// DepthwiseConvSubgroupBufExecution.cpp
// MNN
//
// Created by MNN on 2023/07/01.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
#include "backend/opencl/execution/buffer/DepthwiseConvSubgroupBufExecution.hpp"
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
#include "core/ConvolutionCommon.hpp"
namespace MNN {
namespace OpenCL {
DepthwiseConvSubgroupBufExecution::DepthwiseConvSubgroupBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: ConvBufCommonExecution(op->main_as_Convolution2D(), backend) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
mCon2dParams = op->main_as_Convolution2D();
mConv2dCommonParams = mCon2dParams->common();
mStrides = {mConv2dCommonParams->strideY(), mConv2dCommonParams->strideX()};
mDilations = {mConv2dCommonParams->dilateY(), mConv2dCommonParams->dilateX()};
int kernelWidth = mConv2dCommonParams->kernelX();
int kernelHeight = mConv2dCommonParams->kernelY();
int outputChannel = mConv2dCommonParams->outputCount();
{
// create tensor for intel filter
mFilter.reset(Tensor::createDevice<float>(std::vector<int>{1, UP_DIV(outputChannel, 16), kernelWidth * kernelHeight, 16}));
auto res = mOpenCLBackend->onAcquireBuffer(mFilter.get(), Backend::STATIC);
cl_int ret_code;
if (!res) {
mValid = false;
return;
}
const float *filterDataPtr = nullptr;
int filterDataSize = 0;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
ConvolutionCommon::getConvParameters(&quanCommon, mCon2dParams, &filterDataPtr, &filterDataSize);
if (filterDataPtr != nullptr) {
std::shared_ptr<Tensor> sourceWeight(Tensor::create<float>(
std::vector<int>{1, outputChannel, kernelWidth, kernelHeight},
(void *)filterDataPtr, Tensor::CAFFE));
std::shared_ptr<Tensor> destWeight(Tensor::create<float>(std::vector<int>{1, UP_DIV(outputChannel, 16), kernelWidth * kernelHeight, 16}));
transformWeight(destWeight.get(), sourceWeight.get());
auto weightDestSize = destWeight->size();
auto buffer_size = destWeight->elementSize();
if (mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
cl::Buffer &weightBuffer = *(cl::Buffer *)mFilter->buffer().device;
auto runTime = mOpenCLBackend->getOpenCLRuntime();
auto queue = runTime->commandQueue();
auto weight_ptr = queue.enqueueMapBuffer(weightBuffer, CL_TRUE, CL_MAP_WRITE, 0, buffer_size, nullptr,
nullptr, &ret_code);
if (weight_ptr != nullptr && ret_code == CL_SUCCESS) {
if (mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
for (int i = 0; i < destWeight->elementSize(); i++) {
((half_float::half *)weight_ptr)[i] = (half_float::half)(destWeight->host<float>()[i]);
}
} else {
::memcpy(weight_ptr, destWeight->host<float>(), buffer_size);
}
} else {
MNN_ERROR("Map error weightPtr == nullptr \n");
}
queue.enqueueUnmapMemObject(weightBuffer, weight_ptr);
}
}
{
int biasSize = mCon2dParams->common()->outputCount();
int buffer_size = ROUND_UP(biasSize, 16); // pack to 16
if (mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
mBias.reset(Tensor::createDevice<float>({1, 1, 1, ROUND_UP(biasSize, 16)}));
backend->onAcquireBuffer(mBias.get(), Backend::STATIC);
cl::Buffer &biasBuffer = openCLBuffer(mBias.get());
cl_int res;
auto biasPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
biasBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &res);
if (biasPtrCL != nullptr && res == CL_SUCCESS) {
::memset(biasPtrCL, 0, buffer_size);
if (nullptr != mCon2dParams->bias()) {
const float *biasDataPtr = mCon2dParams->bias()->data();
if (mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
for (int i = 0; i < biasSize; i++) {
((half_float::half *)biasPtrCL)[i] = (half_float::half)(biasDataPtr[i]);
}
} else {
::memcpy(biasPtrCL, biasDataPtr, biasSize * sizeof(float));
}
}
} else {
MNN_ERROR("Map error biasPtrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(biasBuffer, biasPtrCL);
}
if (mConv2dCommonParams->relu() == true) {
mBuildOptions.emplace("-DRELU");
} else if (mConv2dCommonParams->relu6() == true) {
mBuildOptions.emplace("-DRELU6");
}
int type_size = mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16() ? 2 : 4;
mBuildOptions.emplace("-DTYPE_SIZE=" + std::to_string(type_size));
}
void DepthwiseConvSubgroupBufExecution::transformWeight(const Tensor *weightDest, const Tensor *source) {
int co = source->length(1);
int KernelY = source->length(2);
int KernelX = source->length(3);
::memset(weightDest->host<float>(), 0, weightDest->size());
auto weightPtr = source->host<float>();
for (int oz = 0; oz < co; ++oz) {
auto src = weightPtr + oz * KernelY * KernelX;
int ozC4 = oz / 16;
int mx = oz % 16;
auto dst = weightDest->host<float>() + weightDest->stride(1) * ozC4 + mx;
for (int i = 0; i < KernelY * KernelX; ++i) {
*(dst + i * weightDest->stride(2)) = src[i];
}
}
}
DepthwiseConvSubgroupBufExecution::~DepthwiseConvSubgroupBufExecution() {
mOpenCLBackend->onReleaseBuffer(mFilter.get(), Backend::STATIC);
mOpenCLBackend->onReleaseBuffer(mBias.get(), Backend::STATIC);
}
ErrorCode DepthwiseConvSubgroupBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
auto padding = ConvolutionCommon::convolutionPad(input, output, mConv2dCommonParams);
mPaddings[0] = padding.second;//padY
mPaddings[1] = padding.first;//padX
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannel = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
const int inputChannels = inputShape.at(3);
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
const int filterHeight = mCon2dParams->common()->kernelY();
const int filterWidth = mCon2dParams->common()->kernelX();
int inputImageShape[2] = {inputHeight, inputWidth};
int outputImageShape[2] = {outputHeight, outputWidth};
int strideShape[2] = {mStrides[0], mStrides[1]};
int paddingShape[2] = {mPaddings[0], mPaddings[1]};
int kernelShape[2] = {filterHeight, filterWidth};
int dilationShape[2] = {mDilations[0], mDilations[1]};
auto inputpad = TensorUtils::getDescribe(input)->mPads;
auto outputpad = TensorUtils::getDescribe(output)->mPads;
int input_c_pack = TensorUtils::getTensorChannelPack(input);
int output_c_pack = TensorUtils::getTensorChannelPack(output);
std::set<std::string> buildOptions = mBuildOptions;
buildOptions.emplace("-DFILTER_HEIGHT=" + std::to_string(kernelShape[0]));
buildOptions.emplace("-DFILTER_WIDTH=" + std::to_string(kernelShape[1]));
buildOptions.emplace("-DDILATION_HEIGHT=" + std::to_string(dilationShape[0]));
buildOptions.emplace("-DDILATION_WIDTH=" + std::to_string(dilationShape[1]));
buildOptions.emplace("-DSTRIDE_HEIGHT=" + std::to_string(strideShape[0]));
buildOptions.emplace("-DSTRIDE_WIDTH=" + std::to_string(strideShape[1]));
if (input_c_pack == 4) {
mNeedTranse = true;
mSource.reset(Tensor::createDevice<float>(std::vector<int>{inputShape.at(0), UP_DIV(input->channel(), 16), inputHeight * (inputWidth + inputpad.left + inputpad.right), 16}, Tensor::CAFFE_C4));
mOpenCLBackend->onAcquireBuffer(mSource.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mSource.get(), Backend::DYNAMIC);
mTranseKernel =
mOpenCLBackend->getOpenCLRuntime()->buildKernel("input_transe_buf", "conv_transe_c4_c16", {});
uint32_t mMaxWGS_S =
static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mTranseKernel));
mTranseGlobalWorkSize = {static_cast<uint32_t>(inputWidth * inputHeight),
static_cast<uint32_t>(UP_DIV(inputShape.at(3), 4)),
static_cast<uint32_t>(inputShape.at(0))};
uint32_t idx = 0;
mTranseKernel.setArg(idx++, mTranseGlobalWorkSize[0]);
mTranseKernel.setArg(idx++, mTranseGlobalWorkSize[1]);
mTranseKernel.setArg(idx++, mTranseGlobalWorkSize[2]);
mTranseKernel.setArg(idx++, openCLBuffer(input));
mTranseKernel.setArg(idx++, openCLBuffer(mSource.get()));
mTranseKernel.setArg(idx++, static_cast<uint32_t>(inputWidth));
mTranseKernel.setArg(idx++, static_cast<uint32_t>(inputHeight));
mTranseKernel.setArg(idx++, static_cast<uint32_t>(inputChannels));
mTranseKernel.setArg(idx++, UP_DIV(inputShape.at(3), 4));
mTranseKernel.setArg(idx++, static_cast<uint32_t>(inputpad.left));
mTranseKernel.setArg(idx++, static_cast<uint32_t>(inputpad.right));
mTranseLocalWorkSize = localWS3DDefault(mTranseGlobalWorkSize, mMaxWGS_S, mOpenCLBackend->getOpenCLRuntime(),"conv_transe_c4_c16", mTranseKernel).first;
}
mGlobalWorkSize = {static_cast<uint32_t>(UP_DIV(outputShape.at(2), 8) * outputShape.at(1)),
static_cast<uint32_t>(ROUND_UP(outputShape.at(3), 16)),
static_cast<uint32_t>(outputShape.at(0))};
mLocalWorkSize = {1, 16, 1};
std::string kernelname = "depthwise_conv_2d_buf_c16_c" + std::to_string(output_c_pack);
mKernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_subgroup_buf", kernelname, buildOptions);
uint32_t idx = 0;
if (mNeedTranse) {
mKernel.setArg(idx++, openCLBuffer(mSource.get()));
}
else {
mKernel.setArg(idx++, openCLBuffer(input));
}
mKernel.setArg(idx++, openCLBuffer(output));
mKernel.setArg(idx++, openCLBuffer(mFilter.get()));
mKernel.setArg(idx++, openCLBuffer(mBias.get()));
mKernel.setArg(idx++, static_cast<uint32_t>(inputHeight));
mKernel.setArg(idx++, static_cast<uint32_t>(inputWidth));
mKernel.setArg(idx++, static_cast<uint32_t>(inputChannels));
mKernel.setArg(idx++, static_cast<uint32_t>(inputpad.left));
mKernel.setArg(idx++, static_cast<uint32_t>(inputpad.right));
mKernel.setArg(idx++, static_cast<uint32_t>(outputHeight));
mKernel.setArg(idx++, static_cast<uint32_t>(outputWidth));
mKernel.setArg(idx++, static_cast<uint32_t>(outputpad.left));
mKernel.setArg(idx++, static_cast<uint32_t>(outputpad.right));
mKernel.setArg(idx++, static_cast<uint32_t>(paddingShape[1]));
mKernel.setArg(idx++, static_cast<uint32_t>(paddingShape[0]));
return NO_ERROR;
}
ErrorCode DepthwiseConvSubgroupBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start DepthwiseConvSubgroupBufExecution onExecute !\n");
#endif
if (mNeedTranse) {
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mTranseKernel, mTranseGlobalWorkSize, mTranseLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"DepthwiseConvSubgroup transe", event});
#else
run3DKernelDefault(mTranseKernel, mTranseGlobalWorkSize, mTranseLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
}
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(),
&event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"DepthwiseConvSubgroupBuf", event});
#else
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end DepthwiseConvSubgroupBufExecution onExecute !\n");
#endif
return NO_ERROR;
}
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
#endif /* MNN_OPENCL_BUFFER_CLOSED */