mirror of https://github.com/alibaba/MNN.git
268 lines
10 KiB
C++
268 lines
10 KiB
C++
//
|
|
// ReductionBufExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/10/25.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
|
|
#include "backend/opencl/execution/buffer/ReductionBufExecution.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
ReductionBufExecution::ReductionBufExecution(const MNN::Op* op, Backend* backend) : CommonExecution(backend, op) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start ReductionBufExecution init !\n");
|
|
#endif
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
mAxis = op->main_as_ReductionParam()->dim()->data()[0];
|
|
switch (op->main_as_ReductionParam()->operation()) {
|
|
case ReductionType_MEAN:
|
|
mReductType = 0;
|
|
break;
|
|
case ReductionType_MAXIMUM:
|
|
mReductType = 1;
|
|
break;
|
|
case ReductionType_MINIMUM:
|
|
mReductType = 2;
|
|
break;
|
|
case ReductionType_PROD:
|
|
mReductType = 3;
|
|
break;
|
|
case ReductionType_SUM:
|
|
mReductType = 4;
|
|
break;
|
|
default:
|
|
MNN_ASSERT(false);
|
|
break;
|
|
}
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ReductionBufExecution init !\n");
|
|
#endif
|
|
}
|
|
|
|
int ReductionBufExecution::getLocalSize(int size, int maxGroupSize){
|
|
int local_size = 1;
|
|
while(local_size * 2 <= maxGroupSize && local_size * 2 <= size){
|
|
local_size *= 2;
|
|
}
|
|
return local_size;
|
|
}
|
|
|
|
ErrorCode ReductionBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
|
|
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
|
|
auto runtime = openCLBackend->getOpenCLRuntime();
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
if(mAxis < 0){
|
|
mAxis = input->dimensions() + mAxis;
|
|
}
|
|
int inside = 1;
|
|
int outside = 1;
|
|
for(int i = 0; i < mAxis; ++i){
|
|
outside *= input->length(i);
|
|
}
|
|
for(int i = mAxis + 1; i < input->dimensions(); ++i){
|
|
inside *= input->length(i);
|
|
}
|
|
int dim = input->length(mAxis);
|
|
int local_size = 0;
|
|
auto MaxWorkItems = runtime->getMaxWorkItemSizes();
|
|
|
|
if(dim >= 16){
|
|
mUseLocal = true;
|
|
}
|
|
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
std::vector<int> outputShape = tensorShapeFormat(output);
|
|
|
|
int batch = inputShape.at(0);
|
|
int inputHeight = inputShape.at(1);
|
|
int inputWidth = inputShape.at(2);
|
|
int inputChannels = inputShape.at(3);
|
|
int inputChannelBlocks = (inputChannels + 3) / 4;
|
|
int outputBatch = outputShape.at(0);
|
|
int outputHeight = outputShape.at(1);
|
|
int outputWidth = outputShape.at(2);
|
|
int outputChannels = outputShape.at(3);
|
|
int outputChannelBlocks = (outputChannels + 3) / 4;
|
|
|
|
std::set<std::string> buildOption;
|
|
switch (mReductType) {
|
|
case 0:
|
|
buildOption.emplace("-DOPERATE(a,b)=(a+b)");
|
|
buildOption.emplace("-DGET_AVG");
|
|
buildOption.emplace("-DVALUE=0");
|
|
break;
|
|
case 1:
|
|
buildOption.emplace("-DOPERATE(a,b)=max(a,b)");
|
|
buildOption.emplace("-DVALUE=-FLT_MAX");
|
|
break;
|
|
case 2:
|
|
buildOption.emplace("-DOPERATE(a,b)=min(a,b)");
|
|
buildOption.emplace("-DVALUE=FLT_MAX");
|
|
break;
|
|
case 3:
|
|
buildOption.emplace("-DOPERATE(a,b)=(a*b)");
|
|
buildOption.emplace("-DVALUE=1");
|
|
break;
|
|
case 4:
|
|
buildOption.emplace("-DOPERATE(a,b)=(a+b)");
|
|
buildOption.emplace("-DVALUE=0");
|
|
break;
|
|
default:
|
|
MNN_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
mGlobalWorkSize = {
|
|
static_cast<uint32_t>(outputWidth),
|
|
static_cast<uint32_t>(outputHeight),
|
|
static_cast<uint32_t>(outputBatch * outputChannelBlocks)
|
|
};
|
|
|
|
if(mUseLocal){
|
|
if(batch * inputHeight * inputChannels == outside && 1 == inside && dim == inputWidth){
|
|
local_size = getLocalSize(inputWidth, MaxWorkItems[0]);
|
|
buildOption.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_width_buf", buildOption);
|
|
}else if(batch * inputChannels == outside && inputWidth == inside && dim == inputHeight){
|
|
local_size = getLocalSize(inputHeight, MaxWorkItems[0]);
|
|
buildOption.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_height_buf", buildOption);
|
|
}else if(batch == outside && inputWidth * inputHeight == inside && dim == inputChannels){
|
|
local_size = getLocalSize(inputChannelBlocks - 1, MaxWorkItems[0]);
|
|
buildOption.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
|
|
if(output->buffer().dimensions == 1){
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_channel_dim1_buf", buildOption);
|
|
}else{
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_channel_buf", buildOption);
|
|
}
|
|
mGlobalWorkSize[2] = static_cast<uint32_t>(outputBatch * outputChannels);
|
|
}else if(1 == outside && inputWidth * inputHeight * inputChannels == inside && dim == batch){
|
|
local_size = getLocalSize(batch, MaxWorkItems[0]);
|
|
buildOption.emplace("-DLOCAL_SIZE=" + std::to_string(local_size));
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_batch_buf", buildOption);
|
|
}
|
|
mGlobalWorkSize[0] *= local_size;
|
|
}else{
|
|
buildOption.emplace("-DLOCAL_SIZE=0");
|
|
if(batch * inputHeight * inputChannels == outside && 1 == inside && dim == inputWidth){
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_width_buf", buildOption);
|
|
}else if(batch * inputChannels == outside && inputWidth == inside && dim == inputHeight){
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_height_buf", buildOption);
|
|
}else if(batch == outside && inputWidth * inputHeight == inside && dim == inputChannels){
|
|
if(output->buffer().dimensions == 1){
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_channel_dim1_buf", buildOption);
|
|
}else{
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_channel_buf", buildOption);
|
|
}
|
|
mGlobalWorkSize[2] = static_cast<uint32_t>(outputBatch * outputChannels);
|
|
}else if(1 == outside && inputWidth * inputHeight * inputChannels == inside && dim == batch){
|
|
mReduct1DKernel = runtime->buildKernel("reduction_buf", "reduct_batch_buf", buildOption);
|
|
}
|
|
}
|
|
//printf("reduce axis:%d , %d %d %d %d, useLocal:%d\n", mAxis[0], inputShape[0], inputShape[1], inputShape[2], inputShape[3], mUseLocal);
|
|
|
|
mUnits.resize(1);
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mReduct1DKernel.setArg(idx++, mGlobalWorkSize[0]);
|
|
ret |= mReduct1DKernel.setArg(idx++, mGlobalWorkSize[1]);
|
|
ret |= mReduct1DKernel.setArg(idx++, mGlobalWorkSize[2]);
|
|
ret |= mReduct1DKernel.setArg(idx++, openCLBuffer(input));
|
|
ret |= mReduct1DKernel.setArg(idx++, openCLBuffer(output));
|
|
ret |= mReduct1DKernel.setArg(idx++, inputWidth);
|
|
ret |= mReduct1DKernel.setArg(idx++, inputHeight);
|
|
ret |= mReduct1DKernel.setArg(idx++, inputChannels);
|
|
ret |= mReduct1DKernel.setArg(idx++, batch);
|
|
ret |= mReduct1DKernel.setArg(idx++, inputChannelBlocks);
|
|
ret |= mReduct1DKernel.setArg(idx++, outputWidth);
|
|
ret |= mReduct1DKernel.setArg(idx++, outputHeight);
|
|
ret |= mReduct1DKernel.setArg(idx++, outputChannels);
|
|
ret |= mReduct1DKernel.setArg(idx++, outputChannelBlocks);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg ReductionBufExecution");
|
|
|
|
if(mUseLocal){
|
|
mLocalWorkSize = {static_cast<uint32_t>(local_size), 1, 1};
|
|
}else{
|
|
auto MaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mReduct1DKernel));
|
|
std::string kernelName = "reduct_buf";
|
|
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, MaxWorkGroupSize, openCLBackend->getOpenCLRuntime(), kernelName, mReduct1DKernel).first;
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode ReductionBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start ReductionBufExecution onExecute !\n");
|
|
#endif
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
cl::Event event;
|
|
run3DKernelDefault(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"Reduct1D", event});
|
|
#else
|
|
run3DKernelDefault(mReduct1DKernel, mGlobalWorkSize, mLocalWorkSize,
|
|
mOpenCLBackend->getOpenCLRuntime());
|
|
#endif
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end ReductionBufExecution onExecute !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class ReductionBufCreator : public OpenCLBackend::Creator {
|
|
public:
|
|
virtual ~ReductionBufCreator() = default;
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(inputs[i], false);
|
|
}
|
|
for (int i = 0; i < outputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(outputs[i], false);
|
|
}
|
|
|
|
auto openCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
auto reduct = op->main_as_ReductionParam();
|
|
if (nullptr == reduct->dim()) {
|
|
return NULL;
|
|
}
|
|
if(reduct->dim()->size() != 1) {
|
|
return NULL;
|
|
}
|
|
switch (op->main_as_ReductionParam()->operation()) {
|
|
case ReductionType_MEAN:
|
|
break;
|
|
case ReductionType_MAXIMUM:
|
|
break;
|
|
case ReductionType_MINIMUM:
|
|
break;
|
|
case ReductionType_PROD:
|
|
break;
|
|
case ReductionType_SUM:
|
|
break;
|
|
default:
|
|
return NULL;
|
|
break;
|
|
}
|
|
return new ReductionBufExecution(op, backend);
|
|
}
|
|
};
|
|
|
|
OpenCLCreatorRegister<ReductionBufCreator> __reductionBuf_op(OpType_Reduction, BUFFER);
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|