mirror of https://github.com/alibaba/MNN.git
130 lines
4.9 KiB
C++
130 lines
4.9 KiB
C++
//
|
|
// Interp3DExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/opencl/execution/image/Interp3DExecution.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
Interp3DExecution::Interp3DExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
|
|
: Execution(backend) {
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
auto interp3DParam = op->main_as_Interp();
|
|
mCordTransform[0] = interp3DParam->widthScale();
|
|
mCordTransform[1] = interp3DParam->widthOffset();
|
|
mCordTransform[2] = interp3DParam->heightScale();
|
|
mCordTransform[3] = interp3DParam->heightOffset();
|
|
mCordTransform[4] = interp3DParam->depthScale();
|
|
mCordTransform[5] = interp3DParam->depthOffset();
|
|
|
|
std::set<std::string> buildOptions;
|
|
std::string kernelName = "interp3D";
|
|
if (op->main_as_Interp()->resizeType() == 1) {
|
|
mKernel = runtime->buildKernel("nearest", kernelName, buildOptions);
|
|
} else {
|
|
MNN_ERROR("Resize types other than nearest are not supported in Interp3D opencl! Using nearest instead\n");
|
|
mKernel = runtime->buildKernel("nearest", kernelName, buildOptions);
|
|
}
|
|
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
|
|
}
|
|
|
|
ErrorCode Interp3DExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
Tensor *input = inputs[0];
|
|
Tensor *output = outputs[0];
|
|
auto runtime = ((OpenCLBackend *)backend())->getOpenCLRuntime();
|
|
startRecord(runtime, mRecording);
|
|
|
|
std::vector<int> inputImageShape = tensorShapeFormat(input); // {C/4 * H * W, N * D} for 5-D Tensor
|
|
std::vector<int> outputImageShape = tensorShapeFormat(output);
|
|
|
|
auto inputShape = input->shape();
|
|
auto outputShape = output->shape();
|
|
const int inputBatch = inputShape[0];
|
|
const int inputChannels = inputShape[1];
|
|
const int inputDepth = inputShape[2];
|
|
const int inputHeight = inputShape[3];
|
|
const int inputWidth = inputShape[4];
|
|
|
|
const int channelBlocks = UP_DIV(inputChannels, 4);
|
|
|
|
const int outputDepth = outputShape[2];
|
|
const int outputHeight = outputShape[3];
|
|
const int outputWidth = outputShape[4];
|
|
|
|
mGWS = {static_cast<uint32_t>(channelBlocks),
|
|
static_cast<uint32_t>(outputHeight * outputWidth),
|
|
static_cast<uint32_t>(outputDepth * inputBatch)};
|
|
|
|
MNN_ASSERT(outputDepth > 0 && outputHeight > 0 && outputWidth > 0);
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mKernel.setArg(idx++, mGWS[0]);
|
|
ret |= mKernel.setArg(idx++, mGWS[1]);
|
|
ret |= mKernel.setArg(idx++, mGWS[2]);
|
|
ret |= mKernel.setArg(idx++, openCLImage(input));
|
|
ret |= mKernel.setArg(idx++, openCLImage(output));
|
|
ret |= mKernel.setArg(idx++, mCordTransform[4]);
|
|
ret |= mKernel.setArg(idx++, mCordTransform[2]);
|
|
ret |= mKernel.setArg(idx++, mCordTransform[0]);
|
|
ret |= mKernel.setArg(idx++, mCordTransform[5]);
|
|
ret |= mKernel.setArg(idx++, mCordTransform[3]);
|
|
ret |= mKernel.setArg(idx++, mCordTransform[1]);
|
|
ret |= mKernel.setArg(idx++, static_cast<int32_t>(inputDepth));
|
|
ret |= mKernel.setArg(idx++, static_cast<int32_t>(inputHeight));
|
|
ret |= mKernel.setArg(idx++, static_cast<int32_t>(inputWidth));
|
|
ret |= mKernel.setArg(idx++, static_cast<int32_t>(outputDepth));
|
|
ret |= mKernel.setArg(idx++, static_cast<int32_t>(outputHeight));
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg Intep3DExecution");
|
|
|
|
std::string name = "interp3D";
|
|
mLWS = localWS3DDefault(mGWS, mMaxWorkGroupSize, runtime, name, mKernel).first;
|
|
recordKernel3d(mKernel, mGWS, mLWS, mOpenCLBackend->getOpenCLRuntime());
|
|
endRecord(runtime, mRecording);
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
ErrorCode Interp3DExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("Start Interp3DExecution onExecute... \n");
|
|
#endif
|
|
|
|
#ifdef ENABLE_OPENCL_TIME_PROFILER
|
|
cl::Event event;
|
|
run3DKernelDefault(mKernel, mGWS, mLWS,
|
|
mOpenCLBackend->getOpenCLRuntime(), &event);
|
|
|
|
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"Interp3D", event});
|
|
#else
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isUseRecordQueue()){
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isDevideOpRecord())
|
|
mOpenCLBackend->getOpenCLRuntime()->getRecordings()->emplace_back(mRecording);
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("End Interp3DExecution onExecute... \n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
run3DKernelDefault(mKernel, mGWS, mLWS, mOpenCLBackend->getOpenCLRuntime());
|
|
#endif
|
|
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end Interp3DExecution onExecute... \n");
|
|
#endif
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
OpenCLCreatorRegister<TypedCreator<Interp3DExecution>> __Interp3D_op_(OpType_Interp3D, IMAGE);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|