MNN/source/backend/opencl/execution/image/PoolExecution.cpp

177 lines
6.5 KiB
C++

//
// PoolExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/PoolExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "backend/opencl/core/OpenCLBackend.hpp"
namespace MNN {
namespace OpenCL {
std::vector<uint32_t> PoolExecution::poolLocalWS(const std::vector<uint32_t> &gws, const uint32_t maxWorkGroupSize) {
std::vector<uint32_t> lws(3, 0);
auto maxWorkItemSizes = mOpenCLBackend->getOpenCLRuntime()->getMaxWorkItemSizes();
uint32_t deviceComputeUnits = mOpenCLBackend->getOpenCLRuntime()->deviceComputeUnits();
int coreNum = deviceComputeUnits;
for (int i = 0, totalSizeNow = 1; i < gws.size(); ++i) {
int remain = gws[i] % coreNum, groupSize = gws[i] / coreNum;
if (remain == 0) {
lws[i] = groupSize;
} else {
while(groupSize) {
int remain = gws[i] % groupSize;
if (remain == 0 && (i > 0 || groupSize <= maxWorkGroupSize)) {
lws[i] = groupSize;
break;
}
--groupSize;
}
}
int limit = std::min<uint32_t>(maxWorkGroupSize / totalSizeNow, maxWorkItemSizes[i]);
lws[i] = std::max<uint32_t>(std::min<uint32_t>(lws[i], limit), 1);
totalSizeNow *= lws[i];
}
return lws;
}
PoolExecution::PoolExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: Execution(backend) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
mPoolParams = op->main_as_Pool();
mPoolType = mPoolParams->type();
mStrides[0] = mPoolParams->strideY();
mStrides[1] = mPoolParams->strideX();
mKernels[0] = mPoolParams->kernelY();
mKernels[1] = mPoolParams->kernelX();
mPaddings[0] = mPoolParams->padY() * 2;
mPaddings[1] = mPoolParams->padX() * 2;
mPadType = mPoolParams->padType();
if (mPadType == PoolPadType_VALID) {
mPaddings[0] = 0;
mPaddings[1] = 0;
}
std::set<std::string> buildOptions;
std::string kernelName = "pooling";
auto runtime = mOpenCLBackend->getOpenCLRuntime();
if (mPoolType == PoolType_AVEPOOL) {
buildOptions.emplace("-DPOOL_AVG");
}
mKernel = runtime->buildKernel("pooling", kernelName, buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
ErrorCode PoolExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start PoolExecution onResize !\n");
#endif
startRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
auto input = inputs[0];
auto output = outputs[0];
if (mPoolParams->isGlobal()) {
std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
mKernels = {inputShape.at(1), inputShape.at(2)};
mStrides = {inputShape.at(1), inputShape.at(2)};
mPaddings = {0, 0};
}
if (mPadType == PoolPadType_SAME) {
int padNeededHeight = std::max(0, (output->height() - 1) * mStrides[0] + mKernels[0] - input->height());
int padNeededWidth = std::max(0, (output->width() - 1) * mStrides[1] + mKernels[1] - input->width());
mPaddings[0] = padNeededHeight;
mPaddings[1] = padNeededWidth;
}
MNN_ASSERT(mDilations[0] == 1 && mDilations[1] == 1);
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int batch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int channels = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
int channelBlocks = (channels + 3) / 4;
mGlobalWorkSize = {
static_cast<uint32_t>(channelBlocks),
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(batch * outputHeight),
};
int inputImageShape[2] = {inputHeight, inputWidth};
int paddingShape[2] = {mPaddings[0] / 2, mPaddings[1] / 2};
int strideShape[2] = {mStrides[0], mStrides[1]};
int kernelShape[2] = {mKernels[0], mKernels[1]};
mLocalWorkSize = poolLocalWS(mGlobalWorkSize, mMaxWorkGroupSize);
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[2]);
ret |= mKernel.setArg(idx++, openCLImage(input));
ret |= mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= mKernel.setArg(idx++, static_cast<int32_t>(outputHeight));
ret |= mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= mKernel.setArg(idx++, sizeof(strideShape), strideShape);
ret |= mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= mKernel.setArg(idx++, openCLImage(output));
MNN_CHECK_CL_SUCCESS(ret, "setArg PoolExecution");
recordKernel3d(mKernel, mGlobalWorkSize, mLocalWorkSize, mOpenCLBackend->getOpenCLRuntime());
endRecord(mOpenCLBackend->getOpenCLRuntime(), mRecording);
#ifdef LOG_VERBOSE
MNN_PRINT("end PoolExecution onResize !\n");
#endif
return NO_ERROR;
}
ErrorCode PoolExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start PoolExecution onExecute !\n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"Pooling", event});
#else
if(mOpenCLBackend->getOpenCLRuntime()->isUseRecordQueue()){
if(mOpenCLBackend->getOpenCLRuntime()->isDevideOpRecord())
mOpenCLBackend->getOpenCLRuntime()->getRecordings()->emplace_back(mRecording);
#ifdef LOG_VERBOSE
MNN_PRINT("End PoolExecution onExecute... \n");
#endif
return NO_ERROR;
}
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end PoolExecution onExecute !\n");
#endif
return NO_ERROR;
}
OpenCLCreatorRegister<TypedCreator<PoolExecution>> __Pool_op(OpType_Pooling, IMAGE);
} // namespace OpenCL
} // namespace MNN